
On (the Lack of) Code Confidentiality in Trusted Execution Environments

Ivan Puddu, Moritz Schneider, Daniele Lain, Stefano Boschetto, Srdjan Čapkun
Department of Computer Science

ETH Zurich
{name.surname}@inf.ethz.ch

Abstract—Trusted Execution Environments (TEEs) have been
proposed as a solution to protect code confidentiality in scenar-
ios where computation is outsourced to an untrusted operator.
We study the resilience of such solutions to side-channel attacks
in two commonly deployed scenarios: when the confidential
code is a native binary that is shipped and executed within
a TEE and when the confidential code is an intermediate
representation (IR) executed on top of a runtime within a TEE.
We show that executing IR code such as WASM bytecode on
a runtime executing in a TEE leaks most IR instructions with
high accuracy and therefore reveals the confidential code. Con-
trary to IR execution, native execution is much less susceptible
to leakage and largely resists even the most powerful side-
channel attacks. We evaluate native execution leakage in Intel
SGX and AMD SEV and experimentally demonstrate end-to-
end instruction extraction on Intel SGX, with WASM bytecode
as IR executed within two popular WASM runtimes: WAMR and
wasmi. Our experiments show that IR code leakage from such
systems is practical and therefore question the security claims
of several commercial solutions which rely on TEEs+WASM
for code confidentiality.

1. Introduction

The trend of outsourcing data storage and computation
has given rise to concerns about the confidentiality of not
only data but also of code executing on remote (typically
cloud) services. To address these broad concerns, confiden-
tial computing, based on Trusted Execution Environments
(TEEs) such as Intel SGX [1] and AMD SEV [2], has been
deployed in today’s commercial cloud [3, 4, 5].

TEEs allow the client to deliver their confidential code
and data into a protected CPU enclave, which then isolates
it from the OS and hypervisor that are running on the same
machine and, more generally, from the untrusted Service
Provider (SP). This is typically achieved via attestation – the
client first sends the public part of its code to the SP (e.g.,
a VM), attests that this code is running within an enclave,
establishes a secure channel (typically TLS) to the enclave,
and then uses the secure channel to deliver confidential
code and data to the enclave. Once the confidential code
is delivered to the enclave, it can be executed in isolation.
Recent years have seen an emergence of several designs that
generally follow this approach, use different TEEs, and offer

Figure 1. The two main approaches providing code confidentiality with
TEEs: native execution (above the dashed line) and IR execution (below
the dashed line).

various trade-offs, both as academic proposals [6, 7, 8, 9,
10, 11, 12, 13] and commercial solutions [14, 15, 16, 17].

One of the core ways in which these solutions diverge
is the format in which the confidential code is delivered to
the enclave. They typically follow one of two approaches:
native execution and IR execution, where IR stands for
Intermediate Representation. We illustrate these approaches
in Fig. 1. In native execution, the developer compiles the
confidential code to a native binary (i.e., x86) and then,
after initializing a remote enclave, sends the binary to it. In
IR execution, the developer compiles the confidential code
to bytecode (e.g., WebAssembly or Java) or directly sends
the source code to the enclave. Whereas in the case of native
execution, the enclave can simply copy the instructions from
the received binary to memory and execute them, in the
case of IR execution, it needs first to convert the received
IR into native code. This is done by a Virtual Machine
(VM)-like environment in which either a just-in-time (JIT)
compiler first converts the IR code to native or an interpreter
directly executes it. A number of academic and commercial
systems now support either native or IR execution within
TEEs. WebAssembly (WASM) runtimes are particularly
well supported [14, 15, 16, 10, 12] because WASM requires
a small runtime resulting in a small TCB. Moreover, more
than 40 programming languages can currently be compiled
to WASM, with support for more underway [18].

However, although several [6, 7, 8, 9, 11, 13, 14, 15,
17] of these systems claim to support code confidentiality
for native or IR execution, so far, these claims have not been
evaluated in the open literature.



Our Paper. We perform the first analysis of confidential
code leakage in native and IR execution of modern TEEs.
We quantify the inherent leakage between these two execu-
tion modes, to evaluate whether the choice of the format in
which code is supplied to the enclave is a factor that system
designers of confidential code solutions should consider. As
this problem has not been previously investigated in the
literature, an essential step of this analysis is to define how
to measure (partial) code leakage. This aspect is not trivial
and plays a crucial role in interpreting our results and the
conclusions that can be drawn from them. To reason about a
deployment mode such as native execution and IR execution
irrespective of the deployed binary, we investigate single
instruction leakage: we estimate how much the attacker can
learn about the distribution of each (IR or native) instruction,
and then we compose this across the whole instruction set.
Intuitively, if for every possible binary the attacker is able
to recover more instructions from IR execution than from
native execution then the former is more leaky than the latter.

However, this analysis can be influenced by prior infor-
mation about the confidential binary, e.g., by knowing which
compiler was used, the attacker might be able to exclude
certain combinations of instructions. Since prior information
needs to be gathered from the developer infrastructure (left
side of the vertical orange line in Fig. 1), it is outside of
the control and visibility of the adversary, and depends on
specific attack scenarios. We decouple the effect of such
prior information by fixing it to zero: we assume that the
attacker does not know how the confidential binary was
created, and only utilizes the public information supplied to
the enclave – i.e., the public code that is loaded and attested
to before the enclave receives the confidential code. This
type of analysis is referred throughout the paper as “open
world” analysis where no prior information about the target
binary is known. In contrast, in a more powerful “closed
world” analysis the attacker has a higher degree of prior
information, e.g., tries to fingerprint specific versions of
libraries that they know were included in the target software.

We perform an open-world code leakage evaluation on
native execution from Intel SGX and AMD SEV TEEs (x86
ISA) and IR execution with WASM runtimes. In our evalu-
ation, we single-step the enclaves by controlling interrupts
and recording various side-channel measurements for each
instruction. This allows building a trace of the execution
of the victim enclave at the instruction granularity in an
attempt to identify individual IR instructions or instruction
sequences.

Findings. Our results show that native execution is largely
robust to even the most sophisticated side-channel attacks
and leaks limited information about individual instructions.
This result is based on the fact that in code leakage attacks
the attacker can differentiate and classify two instructions
only if they differ in their metadata. However, by computing
the metadata of x86 instructions across several microar-
chitectures, we find the information present insufficient to
perform any meaningful instruction recovery. Thus, even
an ideal attacker able to accurately observe the microar-

chitectural state would have a high uncertainty about which
instruction was executed. As we discuss in the paper, this
does not mean that a native execution system cannot be
attacked, it only means that if the attacker has no prior
information about the instruction distribution a code leakage
attack is not feasible.

IR execution, however, has shown to be highly vulnera-
ble to our side-channel analysis on two tested WASM run-
times: WAMR [19], an interpreter developed by a consortium
of companies under the Bytecode Alliance, and wasmi [20],
an independently developed lightweight interpreter. We suc-
cessfully leaked more than 45% of the secret instructions
with 100% confidence from a synthetic C program running
various math and cryptographic functions and from a chess
engine written in Rust [21]. Collectively, we successfully
extracted over 1 billion WASM instructions from both code
bases, albeit not all with 100% confidence. This is possible
because we are able to leak around 80% of the instructions
in the WASM instruction set architecture (ISA) with 100%
confidence. This level of confidence is obtained from just
observing one run of the victim enclave.

These results are consistent with the expected side-
channel leakage. Each IR instruction is represented by sev-
eral native instructions. To identify an IR instruction, the
attacker can therefore rely on a much longer side channel
trace than when it tries to identify an individual native in-
struction. Therefore, it is clear that IR execution is generally
more vulnerable to code leakage than native execution. Our
results show that in the case of IR execution, such leakage
is also practical, which raises questions about the security
guarantees of any IR execution in TEEs.

Contributions. We summarize our contributions as follows:
• To our knowledge, this is the first study to investigate

and bring forth the challenges in providing code con-
fidentiality in TEEs.

• We generalize system designs aiming to provide code
confidentiality in TEEs into two – native execution and
IR execution– and develop a methodology to quantify
and compare their code leakage.

• We analyze instruction leakage in both systems on
various microarchitectures supporting TEEs from Intel
and AMD. Our evaluation reveals that native execution
leaks significantly less than IR execution. We also show
that IR execution greatly amplifies any leakage from
native execution and allows us to extract most of the
confidential instructions from a single execution.

• To demonstrate the practicality of these findings in
IR execution, we develop an end-to-end instruction ex-
traction attack against WAMR and wasmi, two WASM
runtime running on Intel SGX. We responsibly dis-
closed our findings to the affected vendors (cf. Ap-
pendix A).

2. System and Attacker Model

We consider a setting in which computation is out-
sourced while needing to safeguard the confidentiality of

2



the code. Two main parties are involved in this setting:
• A Confidential Algorithm Owner (CAO) that wants to

offload computation to the cloud while keeping their
code confidential; and

• A Service Provider (SP) that provides support for
Trusted Execution Environments (TEEs).

While the SP TEEs provide memory confidentiality at
runtime, the CAO cannot simply create an enclave (a TEE
instance) containing the confidential code, ship it to the SP,
and expect it to remain confidential: on both Intel SGX
and AMD SEV, the initial state of the enclave is visible by
the untrusted operating system (OS) and/or the hypervisor.
Academic [6, 7, 8, 9, 10, 11, 12, 13] and industrial [14,
15, 16, 17] solutions address this problem by supplying
the confidential code to the enclave only after the enclave
has been initialized and attested. The confidential part of
the code is, therefore, only communicated to the enclave
after the attestation and the creation of the secure channel
between the CAO and the enclave.

Typically, two approaches are employed to supply and
execute confidential code in an enclave: native execution and
IR execution. Each can be further broken down into three
stages: (i) compile, (ii) attest, and (iii) deploy and execute.

(i) Compile. In this stage, the CAO compiles its confidential
source code for the TEE. Native execution approaches [6, 7,
8, 9, 17, 16, 13] require the CAO to compile to a native for-
mat (we focus on x86 object binaries). In IR execution [14,
15, 17, 16, 10, 11, 12], code generally gets compiled to
an intermediate representation (IR) chosen as a compilation
target, e.g., WebAssembly (WASM) bytecode and Java byte-
code. In some IR execution systems, the compilation step
is skipped as the TEE directly interprets the source code,
e.g., the enclave directly receives a confidential Javascript,
Python, or Go source code.

(ii) Attest. In this stage, the CAO deploys an initial, non-
confidential code with the SP and attests that this code is
initialized in the enclave. Attestation ensures that the initial
enclave has been deployed in a legitimate TEE and that its
integrity is guaranteed. This initial enclave code is often
provided by the chosen framework or SP [17, 14, 16]. As
part of attestation, the CAO bootstraps a secure channel
(e.g., TLS) with the enclave. On this secure channel, the
CAO sends either the confidential code to the enclave or a
key to decrypt a confidential code image already contained
in the initial enclave.

(iii) Deploy and Execute. After the attestation, the CAO
instructs the initial enclave to execute the confidential code.
In native execution, this is straightforward – the enclave
simply jumps 1 to the entry point of the x86 confidential
code, which was stored in its memory as a result of the
previous stage. In IR execution, the initial enclave contains
an interpreter (e.g., WASM or Python), potentially with a
just-in-time (JIT) compiler; the confidential instructions get
interpreted, and, if a JIT compiler is available, some parts
get compiled to native (x86) to speed up the execution.

1. Potentially, after a dynamic linking step.

2.1. Attacker Model

The goal of the attacker is to leak the instructions and,
therefore, the confidential code that is executing in the TEE.
We assume that the attacker is either the Service Provider
(SP) or has privileged access to the server in which the
confidential code is executing, i.e., the attacker controls the
supervisor software, that is, the hypervisor (on a system
with AMD SEV) and/or the operating system (for Intel
SGX). This is a standard attacker model for TEEs [22, 23].
The attacker can see the non-confidential, initial enclave
code as this code is provided in plaintext to the OS and
hypervisor to load the enclave; typically, this code is public.
Most of the analysis that we perform is done assuming that
the attacker has no prior information about the confidential
code: meaning theoretically any instruction combination is
possible even ones that no compiler might ever produce.
This is referred to as the open world analysis. This is done
to make sure that different levels of prior information about
native execution or IR execution do not bias the results. In
line with the open world setup, we assume that the attacker
has no control over when the confidential algorithm is exe-
cuted and which secret inputs are given to it. We deem this
assumption to be the most realistic, as it implies that some
basic hardening has been implemented. This assumption
impacts the side channels available to the attacker, as for
instance, in this setting, it is difficult to i) restart an enclave a
large number of times to average out noise, and ii) correlate
the instructions across multiple runs – as different inputs
might lead to different code paths being executed.

Since the attacker has control over supervisor software
on the system, they are able to: manipulate interrupts, ob-
serve changes to paging management structures (such as
page table entries), and other information available to the
OS, such as the last branch record (LBR). These capabil-
ities2 allow the attacker to single-step the TEE execution
(through interrupts), see whether memory read and writes
are executed (through the page tables), the approximate
location (down to the cacheline) of memory read and writes,
which code-page is being executed, whether some types of
jumps were executed, and the execution time of interrupted
instructions. We refer to an attacker with these capabilities
as the state-of-the-art (SotA) attacker. Note that despite
causing a high-level of interrupts the SotA attacker is usually
quite hard to detect, as discussed more in detail in Section 9.

Throughout the paper, unless otherwise specified, we
employ an open world SotA attacker. However, when nec-
essary to establish upper bounds on code leakage, we use
a stronger open world attacker model, which we refer to
as the ideal attacker. As the ideal attacker is specific to
the system for which we want to estimate an upper bound,
we will only introduce it when needed in the following
sections. When specified, we also study a closed world
attacker, particularly to get an intuition about the usefulness
of partial code leakage.

2. As demonstrated in the literature against SGX [24, 25, 26, 27, 28, 29]
and AMD SEV [30]. Also see Section 9.

3



Malicious OS / HypervisorMalicious OS / Hypervisor

Enclave (SGX / AMD SEV)

Application Source code 
(C, C++, Rust, Go, …)

WASM Bytecode

x86 binary

Compiled to

Enclave (SGX / AMD SEV)

WASM Interpreter / JIT

Native System WASM System

Compiled to
Sent to

Sent to

Figure 2. The two approaches to code confidentiality in TEEs. The na-
tive execution enclave (left) gets the source code compiled to x86; the
IR execution enclave (right) gets as input WASM bytecode. Both systems
operate in an environment with a malicious OS and are tasked with
executing the same source code.

3. Leakage Analysis Overview

To compare the leakage in native and IR execution,
we instantiate them in two systems, the native system and
the WASM system, illustrated in Fig. 2. The native system
accepts and executes confidential instructions in x86 (native)
binary format. The WASM system implements IR execution
by accepting as input WASM bytecode instructions. The
WASM system enclave can then either interpret the bytecode
or process it with a JIT compiler before execution. Collec-
tively, we refer to interpreters and JIT compilers as transla-
tors. We choose WebAssembly (WASM) to evaluate inter-
mediate representation (IR) leakage due to its widespread
adoption, ample language support (more than 40 languages
can be compiled to WASM bytecode [18]), and the existence
of multiple stable and lightweight runtimes. Further, it can
easily be compiled into native code, making the comparison
between the two systems easier and more rigorous. The
enclaves in the two systems get the instructions in different
formats from the same source program. We compile the
source code to WASM bytecode and then the bytecode to
x86 outside the enclave (cf. Fig. 2). The native system is
given the final x86 binary, while the WASM system is given
the intermediate WASM bytecode. Thus, the two systems are
tasked with executing the very same program, allowing us
to attribute any possible differences in leakage to the system
running the instructions.

There are two fundamental differences between the na-
tive system and WASM system that influence their suscep-
tibility to side channels: (i) translators often execute more
low-level instructions than equivalent native binaries, and
(ii) the instruction set architectures (ISAs) of native instruc-
tions are usually considerably bigger than the ISAs used for
interpreted languages. Combining these two observations,
our hypothesis is that the WASM system is potentially
leakier than the native system due to having longer (and

x86 imul IM

x86 movswq IM

x86 jmpq IM

x86 imul IM

x86
imul

WASM
i32.mul

Figure 3. Sample trace collection during the execution of an x86 imul
and one of its WASM equivalents, i32.mul. The x86 instruction gener-
ates a single Instruction Measurement (IM), while the WASM instruction
generates 9 IMs due to executing 9 underlying x86 instructions.

thus more unique) patterns of execution traces and having
fewer possible instructions in the ISA that generate these
traces. In the following, we expand on these differences.

Number of Executed Native Instructions. Translators
of high-level languages with powerful semantics execute
multiple native instructions for each high-level instruction.
These translators thus amplify the amount of information an
attacker can collect during the execution of interpreted code,
compared to attacking a native system. For example, Fig. 3
shows the difference in collected traces by an attacker when
profiling one x86 instruction versus one of its equivalents
in a WASM interpreter.

All translators, from high-performance JIT-based to in-
terpreters, must perform two steps to execute a binary: first,
they have to parse the code and, second, execute it. Parsing
usually involves looping over each instruction of the input
code, decoding it, and preparing it for execution (e.g., with
a switch-case statement, as shown in Listing 1). As
the underlying architecture does not provide single complex
instructions to perform these operations, multiple native
instructions are executed while parsing a single WASM
instruction. Additionally, since different WASM instructions
require different actions by the parser, the amplified in-
structions will differ based on which WASM instruction is
being parsed. Effectively, this creates an exploitable control-
flow dependency. Similar issues arise during execution. For
instance, the WASM add instruction adds the last two
values from the WASM stack and then writes the result back
to the stack. An interpreter needs first to read these values
and then write the result back, generally using multiple
native instructions for this task. In contrast, on x86, it is
possible to perform all these operations with a single add.
In summary, the WASM system enclave executes several
(and different) x86 instructions for each WASM instruction
both during parsing and execution.

While Listing 1 shows the implementation of the
WAMR [19] loader, other WASM projects we inspected
(Wasmtime [31], Wasmer [32], WasmEdge [33],
Wasm3 [34], and wasmi [20]) have similar
implementations. In fact, we remark that the amplification
described above with the related control-flow dependency
on input instructions is likely to be found in any
interpreter or compiler available today. However, different

4



1 static bool
2 wasm_loader_prepare_bytecode(...) {
3 ...
4 while (p < p_end) {
5 opcode = *p++;
6 emit_label(opcode);
7

8 switch (opcode) {
9 ...

10 case WASM_OP_NOP:
11 skip_label();
12 break;
13

14 case WASM_OP_IF:
15 PRESERVE_LOCAL_FOR_BLOCK();
16 POP_I32();
17 ...

Listing 1. Excerpt of the main loop of the Bytecode alliance WAMR
translator [19] (commit b554a9d) responsible for loading a WASM binary.
opcode (line 5) is the opcode of the current WASM instruction being
parsed. This listing shows how a control-flow dependency on the opcode
usually manifests (line 8) in WASM interpreters and compilers, and how
different instructions exhibit different amplification factors. For instance,
WASM_OP_IF (line 14) requires multiple operations to be translated, am-
plifying the information available to the attacker compared to the equivalent
functionality in x86 (usually a single instruction).

implementations will exhibit different amplification factors,
as, compared to each other, they might employ a different
number of x86 instructions to parse and emulate high-
level instructions. This aspect is crucial as it affects the
exploitability of the high-level instructions.

Difference in ISAs. The WASM Instruction Set Architec-
ture (ISA) is significantly smaller than the x86 ISA (between
≈6x and ≈14x, depending on the x86 microarchitecture).
Since the attacker knows that the enclave accepts only valid
instructions, they have fewer instructions to guess from in
the WASM system than in the native system. To give a
concrete example of why this helps the attacker, consider
the add instruction in x86 and WASM. In the WASM case,
it can only add the two most recent values in the stack,
while in x86, many variations are possible, e.g., adding
from different locations in memory, from registers, or even
vectors. Assuming an attacker that can only leak the opcode
(i.e., an add), this reveals more information in the WASM
system than in the native system.

4. Methodology

In our study, we single-step the enclave to collect
information about each executed native instruction. We re-
fer to the information collected for each native instruction
as instruction measurement (IM). Given the side channels
available in our attacker model, each IM contains the follow-
ing information about an executed instruction: the execution
time, the set of accessed code pages, the set of accessed data
pages, and for each of the data pages, whether the access
was a memory read or write. A series of IMs forms an
execution trace containing all the information available to
the attacker. Note that the trace contains as many IMs as

the x86 instructions measured. Thus, in the native system,
the attacker collects one IM per confidential x86 instruction.
On the other hand, in the WASM system, multiple IMs are
collected for each confidential WASM instruction. Finally,
we can only measure instructions if they are executed; hence
the execution trace only contains IMs related to the executed
branches and no information about non-executed code paths.

Features. It is worth noting that not all the information in
an IM can be directly used to infer which instruction was
executed. This is due to two reasons: first, the measurement
might be too noisy, and second, it might be only related to an
instruction’s inputs and not to its operand. For instance, the
side channel used to measure the execution time is subject
to noise, and it is, therefore, generally hard to discriminate
instructions based on this measurement: a memory read
(mov) and an addition from memory (add) are two very
different instructions (in terms of a program’s logic) that
produce similar timing distributions [35]. Thus, based on
the timing information alone, an attacker would not be able
to distinguish between the two. With respect to the second
reason, knowing the data page that was accessed does not
generally contain any information about the instruction type
– the relevant piece of information about the instruction is
that a memory access was made, not where it was made.
On the other hand, knowing whether the stack was accessed
does reveal information about the executed instruction type
because some instructions only operate on the stack and not
on other segments of memory.

Therefore, instead of using the raw numbers contained
in IMs, we collect four features: the execution latency (with
a resolution of 10 cycles), the type of memory access
(read/write or no access), whether the instruction accessed
the stack (yes or no), and whether the instruction modified
the control-flow (yes or no). We arbitrarily choose a 10-
cycle resolution for the attacker to over-approximate the best
current attacker capabilities. To the best of our knowledge,
even the most advanced attacks that leverage instruction
timings show significant noise and are not even close to
a resolution of 10 cycles for current TEEs [36, 25]. More
details on related attacks can be found in Section 8. Note
also that the IM does not include cache access information,
despite being within the capabilities of a SotA today. We
decided to exclude this information from the IM because
the relevant features from this measurement (whether mem-
ory was accessed) can already be inferred from the page
monitoring controlled channel, which is easier to measure
and deterministic. This highlights the difference between
recovering instructions compared to data: for data inference,
precise memory accesses are important, while for instruction
inference, we need to extract metadata about the instruction.

Candidate Sets. To be able to quantitatively compare code
leakage, we introduce the notion of candidate sets. The
attacker forms a candidate set for each instruction they
are trying to recover. Let us assume that from the IM, the
attacker can deduce that the underlying confidential x86 in-
struction made a memory read from the stack, e.g., because
the IM contains a memory read from a page assigned to the

5



1 ...
2 .loop:
3 mov -4(%rbp), %ecx # %ecx = z
4 imul %eax, %ecx # %ecx = z * x
5 mov %ecx, -4(%rbp) # z = %ecx
6 inc %eax # x += 1
7 cmp -8(%rbp), %eax # x < y?
8 jl .loop # loop if true
9 .out:

10 ...

Figure 4. A simple assembly program with a loop that, on each iteration,
computes z = z ∗ x. The loop iterates y times. The variable x is stored
on %eax, y on -8(%rbp), and z on %ecx.

TABLE 1. ATTACKER VIEW OF THE ASM IN FIG. 4; y = 2.

Instruction Cycles Memory Stack Access Is CF? Candidate set size*

mov 0− 10 R ✓ ✗ 545
imul 0− 10 - ✗ ✗ 581
mov 0− 10 W ✓ ✗ 86
inc 0− 10 - ✗ ✗ 581
cmp 0− 10 R ✓ ✗ 545
jmp 0− 10 - ✗ ✓ 23
mov 0− 10 R ✓ ✗ 545
imul 0− 10 - ✗ ✗ 581
mov 0− 10 W ✓ ✗ 86
inc 0− 10 - ✗ ✗ 581
cmp 0− 10 R ✓ ✗ 545
jmp 0− 10 - ✗ ✓ 23

Data collected in the Skylake microarchitecture.
*Candidate sets contain only semantically different instructions.

application’s stack. Then the candidate set for that IM will
contain instructions such as pop, mov, and add, as they can
all read from the stack. On the other hand, it will not contain
a push, as this instruction always writes to the stack. More
formally, an instruction belongs to the candidate set of an
IM if and only if there exists a version of that instruction
that would produce a set of observations that matches the
IM. The candidate set is useful in that it tells us that the
instruction underlying an IM can only be among the ones
contained in that IM candidate set. Therefore, if the set only
contains one instruction, then the attacker has recovered a
target instruction. In general, we can say that the smaller the
candidate sets, the more information the attacker collected
(i.e., the lower the entropy). The candidate set allows us
to compare the leakage in the two systems in the sense
that if one system tends to produce smaller candidate sets
than the other, then we can say that it is leakier – and
by how much. The ISA used in the target system (x86
or WASM) helps to form an initial candidate set. Since
the target system can only execute valid instructions, the
candidate set of an instruction with an “empty” IM contains
all of the instructions of the system’s ISA.

Finally, where indicated, we report numbers for seman-
tically different instructions in the candidate sets. We define
semantic equivalent instructions as instructions that perform
the same task but differ only in the input operand size or
type (e.g., signed or unsigned). For instance, in WASM,
i32.add is equivalent to i64.add, while in x86, movq
is equivalent to mov. Semantically different instructions are
then instructions that are not semantically equivalent. We
perform this simplification because we note that generally
if a candidate set contains only semantically equivalent
instructions, it can be misleading to report a higher number
of instructions in it.

5. Leakage Analysis

We now explain how to leverage IMs to build candidate
sets for instructions in the native and WASM systems in an
open world setting (cf. Section 2.1), and use such candidate
sets to measure how much of the confidential code leaks.
For both systems, we proceed as follows:

• First, we analyze a simple program: a small loop where
each iteration computes the multiplicative product of
two numbers, as shown in Fig. 4. It is composed of
6 assembly instructions, where the two numbers are
multiplied in line 4. We compile this program to x86
for the native system and to WASM for the WASM
system.

• Second, we discuss the IMs obtained from its execution
and analyze the candidate set sizes for each instruction.

• Finally, we estimate the leakage of the system by
computing candidate set sizes for all instructions in
each ISA.

In the following, we first analyze the baseline native system.
We start our analysis with the SotA attacker with practical
capabilities (e.g., timing resolution of 10 cycles). We then
expand the attacker capabilities to account for future attacks
with single-cycle accuracy, functional units occupied over
time, and more. We use such an unrealistically strong at-
tacker to determine an upper bound to leakage in the native
system (Section 5.2). Finally, we analyze the WASM system
under the SotA attacker (Section 5.3).

5.1. Leakage in the Native System

We compiled the sample binary from WASM bytecode
to x86 and profiled its execution to gather its IMs: Table 1
shows the collected features when the loop is executed
twice, and the number of candidate instructions on Skylake
CPUs that can produce the same IMs. We observe that, de-
spite combining the information from several side channels,
the attacker rarely gets a candidate set with fewer than 100
instructions.

In fact, this is not the case just in the example binary
of Fig. 4, but it is a consequence of the candidate sets that
can be built with the employed side channels. As we will
outline in the following, IMs of many instructions belong to
the same candidate set, thus making them indistinguishable
from each other.

Full ISA. To place all instructions of the ISA into their
candidate sets, we need to collect IMs for all instructions
(and their variations) in the x86 ISA available in SGX and

6



Figure 5. Instruction candidate set size distribution of semantically different
SGX and SEV instructions for various 64-bit x86 microarchitectures under
the SotA attacker. The plot shows the minimum candidate set size that
contains at least x percent of the ISA available in the TEE (SEV for
AMD and SGX for Intel). This assumes the best resolution available to
the SotA attacker w.r.t. execution time is 10 cycles. The dotted red line is
set at y = 10, and it indicates that > 90% of the ISA instructions have a
candidate set size greater than 10.

SEV. Further, we would also have to do this for different
microarchitectures, as these support different extensions of
the x86 ISA and thus change the set of available instruc-
tions. Instead of generating programs to execute all possible
instructions on different microarchitectures, we adapted and
reused the results of a dataset collected as part of an x86
benchmarking suite for the x86 ISA [35]. Particularly, we
inferred from the dataset to which candidate set among
the ones introduced above every instruction belongs. The
dataset had to be adapted to account for the fact that some
instructions are illegal in SGX or that others are intercepted
by the hypervisor on SEV. We describe these caveats in
Appendix B.

By computing all possible candidate sets, we can check
how many instructions of the ISA have a candidate set size
below a certain threshold, with the idea that the smaller
the overall candidate set sizes are, the leakier a system
is. Observe that matching IMs to candidate sets and thus
candidate instructions is the exact problem an attacker aim-
ing to leak confidential code tries to solve. We report the
cumulative distribution of the sizes of the candidate sets in
Fig. 5. What can be observed from the figure is that around
80% of the instructions of the ISA belong to a candidate set
containing more than 100 instructions. Note that for SEV,
1.48% of the instructions in the ISA belong to a candidate
set of size 1 and can, therefore be leaked to the attacker.
This is because in SEV, some instructions, such as CPUID,
are intercepted by the hypervisor and are, therefore leaked
to the attacker (not through side channels, but through a
system interface). There are a few other instructions with
a candidate set size < 10, but they are limited to less
than 8% for all analyzed microarchitectures. Thus, the open-
world SotA attacker is practically never able to resolve any
instruction of the x86 ISA based on the evaluated side-
channels information alone.

Figure 6. Instruction candidate set size distribution of semantically different
SGX and SEV instructions for various 64-bit x86 microarchitectures under
the ideal attacker. The dotted green line is at y = 1. Given where it
intersects the various microarchitectures’ ISA, it indicates that more than
90% of the instructions cannot be recovered even by the ideal attacker.

5.2. Ideal Attacker

For the native system, we also explore different strengths
of attacker models, for instance, showing how the candidate
set sizes change based on different levels of cycle accuracy
available to the attacker. We present these results in Ap-
pendix C and discuss in Section 8 how these resolutions
map to known attacks. Here instead, we study what we
believe to be the extreme in terms of attacker strength,
which we refer to as the ideal attacker. The ideal attacker
has the capability of benchmarking instructions – like done
in [35]. Note that [35] is a general method to benchmark
instructions outside the enclave and hence uses capabilities
currently blocked by SGX and SEV, such as reading per-
formance counters and injecting instructions around target
instructions. These capabilities also allow the attacker to
observe the utilization of individual functional units and
obtain cycle-accurate execution time for each instruction.
We assume that the other security properties of SGX and
SEV otherwise hold, e.g., the ideal attacker cannot read the
enclave memory. To the best of our knowledge, the data
on single instructions collected in [35] is the most detailed
and comprehensive dataset about the performance of current
x86 processors to date. Since current attacks do not even get
close to the resolution and wealth of information available
in [35], the ideal attacker is currently far from realistic.
Crucially, however, these capabilities allow the attacker to
see all the metadata about instructions known today. Mean-
ing that if instructions do not differ for the ideal attacker
it is because their implementation uses the same hardware
resources in the same order. For instance, an x86 add and
an sub in the microarchitectures we studied use the same
resources with the same timings and power consumption.
This analysis, therefore, allows us to establish an upper
bound of leakage (microarchitecture dependent) that can be
achieved by employing (next-gen) side-channel information
about x86 instructions. If a new type of instruction metadata
is discovered in the future, this conclusion might need to be
revised.

7



To build the candidate sets for the ideal attacker, we
construct the IM using the data in [35] as follows: cycle-
accurate execution time, functional units (FUs) occupied
over time, the byte length of the instruction, whether data
addresses are accessed, and the type of data access (read
or write). Regarding the FUs, for each instruction, we let
the attacker perfectly see the order in which they are used
and which other FUs could be used by the instruction.
Using these very detailed IMs, we create the candidate
sets by grouping together all x86 instructions for which
the information in the IM is exactly the same. Finally, we
remove duplicate entries that are semantically similar, e.g.,
mov and movq. The resulting cumulative distribution of the
candidate set sizes is depicted in Fig. 6.

While the resulting candidate set sizes are significantly
smaller than for the SotA attacker, around 50% of the ISA
still belongs to a candidate set of at least size 10 for all
analyzed microarchitectures. On the other hand, up to 10%
of instructions are uniquely identifiable with a candidate set
of size 1 on both SGX and SEV. Based on these results, the
ideal attacker might be able to extract some instructions,
but the majority of the ISA still remains ambiguous and
cannot easily be leaked. Therefore, we conclude that the
studied microarchitectures are implemented in such a way
that not enough information is available to reconstruct most
confidential x86 instructions from the IMs side channels.
Note that this conclusion applies in the open world setting –
that is, if no prior information about the binary executing in
the enclave is given. An attacker with more prior information
might be able to extract more instructions even in the
native execution system. Prior information might include
information about the distributions of compiler-emitted in-
structions or even the distribution of instructions about key
code segments (such as function epilogs). At present, the
weight that prior information plays in this leakage has not
been evaluated, and we leave this to future work.

5.3. Leakage in the WASM System

We again first consider the loop of Fig. 4, compiled to
WASM in the open world setting. However, while in the
native system the binary only gets executed, we note that
WASM translators (AOT, JIT, and pure interpreters) gen-
erally have two phases: loading and interpretation. During
loading, the WASM binary is parsed, and each instruction
is decoded into some internal and implementation-specific
format. The second phase encompasses the execution of the
loaded WASM binary.

We choose to analyze the WAMR [19] and wasmi [20]
interpreters because they combine aspects of both a JIT com-
piler and a pure interpreter. During the loading phase, WAMR
and wasmi parse the WASM instructions and eliminate
instructions whose results can be statically determined. For
instance, the WAMR loader optimizes away instructions that
load constant parameters by pre-placing their constants into
the WASM stack before execution. This optimization speeds
up the interpreter, as only a subset of instructions needs to
be executed later. This pre-processing of instructions makes

TABLE 2. ATTACKER VIEW OF THE LOOP IN FIG. 4 WHEN COMPILED
TO WASM; y = 1. WE REPORT THE NUMBER OF IMS RECORDED AND

THE CANDIDATE SET SIZE BOTH WHEN LOADING (AS DONE IN THE
FIRST JIT PHASE) AND INTERPRETING EACH WASM INSTRUCTION.

# of IM per instruction Candidate set size*

Instruction JIT Loader Interpreter† JIT Loader Interpreter†

WR wi WR wi WR wi WR wi

loop 66 122 - - 1 3 (1) - -
get.local 63 55 - 29 1 1 - 1
get.local 62 55 - 29 1 1 - 1
get.local 63 55 - 29 1 1 - 1
i32.mul 33 27 9 29 4 21 (14) 6 1
i32.store 91 29 14 43 1 11 (5) 1 1
get.local 63 55 - 29 1 1 - 1
i32.load 91 29 14 44 1 11 (5) 1 2 (1)
set.local 80 56 - 26 1 1 - 1
get.local 63 55 - 29 1 1 - 1
i32.load 91 29 14 44 1 11 (5) 1 2 (1)
set.local 80 56 - 26 1 1 - 1
get.local 62 56 - 29 1 1 - 1
i32.const 55 29 - 25 1 9 (4) - 2 (1)
i32.add 33 27 9 29 4 70 (33) 6 2
local.tee 97 56 7 26 1 1 2 1
get.local 62 55 - 29 1 1 - 1
i32.lt_s 33 27 11 30 4 70 (33) 6 10 (6)
br_if 35 181 14 35 1 1 1 1
end 67 46 - - 1 1 - -

WR= WAMR (same version as Listing 1); wi= wasmi (commit e87021b).
*Candidate sets include all instructions. If the candidate set can be simplified,
semantically different instruction counts are reported within parenthesis.

†Some instructions are simplified by the JIT loader and are thus not present
in the interpreter trace. Non-bold instructions are skipped by the WAMR
interpreter. Italics instructions are skipped by the wasmi interpreter. With
multiple loop iterations (y > 1) only non-skipped instructions repeat.

the loading phase of WAMR and wasmi akin to a JIT com-
piler. Multiple native x86 instructions are executed for each
WASM instruction during both phases. Thus, each WASM
instruction of the loop of the sample program lets us collect
multiple IMs: we report them in Table 2. In WASM, the loop
is composed of 20 instructions. The WAMR loader simplifies
12 of the WASM instructions in the loading phase, leaving
8 instructions (in bold in the table) to be executed in the
interpreter phase. The wasmi loader simplifies only two of
those (in italics in the table). In total, for WAMR (wasmi) we
recorded 1290 (1100) IMs in the loading phase of the loop
and 184 (1120) IMs in the interpreter phase; with two loop
iterations. Between loading and interpreting the loop, the
WASM system presents an increase in instructions executed
between 123x (WAMR) and 185x (wasmi) compared to when
the same code is executed in the native system.

Our goal is now to understand how unique each trace
of IMs for each of these WASM instructions is. For this,
we profiled each WASM instruction (see Section 6 for more
details) and obtained their traces of IMs. With this profiling,
we build candidate sets for the WASM system, considering
the information obtained from multiple IMs to differentiate
instructions. Table 2 reports the candidate set sizes for the
instructions in the loop. For several instructions, the attacker
gets candidate set sizes of size 1, thus perfectly recovering
the instruction, which was not possible in the native system.

However, even in WASM, some instructions are very
similar to each other, e.g., instructions that require few

8



Figure 7. Candidate set size distribution of WASM instructions in the WAMR
and wasmi translators under the SotA attacker. Only semantically different
instructions are included in the candidate sets. The green dotted line is at
y = 1, where candidate sets of that size offer no confidentiality.

x86 instructions to execute tend to still be challenging to
classify accurately. For instance, in the WAMR interpreter,
the i32.add and i32.sub instructions are both imple-
mented with 9 x86 instructions and differ for a single one:
i32.add uses an x86 add, wherein i32.sub has an
x86 sub. Since the side channels available to the SotA
attacker cannot distinguish between these two instructions,
i32.add and i32.sub end up in the same candidate set3.
We can also observe this in Table 2: instructions with a small
number of IMs tend to have bigger candidate set sizes.

In summary, the WASM system leaks more instructions
of the example loop compared to the native system, with
85% in WAMR and 80% (90% semantically different) in
wasmi of its instructions being fully leaked, compared to
0% in the native system.

Full ISA. Similarly to the native system, we compute all
possible candidate sets of the WASM system: if the can-
didate sets tend to be small for a large percentage of the
WASM ISA, then the system itself cannot provide code
confidentiality, as this attack will likely extend to different
WASM binaries besides our sample program.

For this, we obtained the IMs of each WASM instruction
while profiling a WASM test suite [37]. The test suite we
used is developed to comply with the WASM standard
and ensures we reach a good coverage for all the 172
core WASM instructions. We depict the distribution of the
WASM instructions’ candidate sets that we obtained for
WAMR and wasmi in Fig. 7. As can be seen, for WAMR
almost 80% of the ISA has a candidate set size ≤ 2, both
in the loading and interpreting phase (which, in an actual
attack, can be combined). The wasmi loader tends to be less
leaky (only about 30% of the ISA is leaked perfectly), but
its interpreter exhibits a similar leakage as the WAMR one.
Comparing this to the native system, where even the ideal
attacker could, at best, recover 10% of the ISA instructions,
it is clear that the WASM system is leakier than the native
system. Finally, not only is the WASM system leakier, but

3. Interestingly, the attacker can still distinguish these two instructions
because they differ in multiple instructions in the loading phase.

the results also highlight that a SotA attacker can practically
break code confidentiality for at least 70% of the WASM
ISA in both WAMR and wasmi.

6. IR Instruction Leakage in Practice

Despite the extent of the leakage of the WASM system,
building an end-to-end instruction extraction attack is far
from trivial. In this section, we describe what challenges
emerge in building the attack and how we overcame them.

To introduce the tasks and challenges faced by the
attacker, let us analyze an example IM trace that the attacker
has extracted by single-stepping the enclave. Assume that
we are given a trace of 184 IMs from the WAMR interpreter
(like in the example used in Section 5.3). Recall that each IM
contains the side-channel measurement of one executed x86
instruction. Say the attacker knows that the first 9 IMs relate
to the first WASM instruction, and the next 14 IMs relate
to the second WASM instruction that was parsed by the
interpreter. Now the attacker can take the first 9 IMs and try
to match them to one of the known WASM candidate sets.
Then the same can be done with the next 14 IMs, and so on.
While this approach is straightforward, it assumes that the
attacker knows a priori how to segment a trace such that each
segment contains the correct number of x86 instructions
that the underlying (and unknown) WASM instruction used
when executing. Note that each WASM instruction generally
needs a different number of x86 instructions to execute, and
additionally each instruction might need a variable number
of x86 instructions depending on its input operands (because
more or less processing is needed based on the input value).
This creates a chicken and egg problem: if the attacker
knew which confidential WASM instructions were executed,
then they could use this information to make an educated
guess on how to segment the trace of IMs. Each segment
would then be classified into a WASM instruction using the
candidate set information. However, the WASM instructions
are not known beforehand – that is the information that the
attacker is trying to extract in the first place.

To break this cyclic dependency, in an attack preparation
phase, we extract more information than just the possible
candidate sets. Particularly, we also collect: i) WASM in-
struction prefix and suffix markers, and ii) possible number
of x86 instructions per WASM instruction. We leverage this
extra information to segment the trace.

With this in mind, the attack is split in two phases: i)
a preparation phase, which we name the Profiling Phase,
and, ii) the Attack Phase. We depict them and how they
interact with each other in Fig. 8. In the profiling phase,
the attacker builds information about the WASM system,
particularly they single-step the enclave in debug mode,
feeding it with known WASM instructions to build the
candidate set information and a database of patterns for
each WASM instruction (this database is used to segment
the trace). The profiling phase needs to be done once for
each TEE and WASM runtime used (e.g., once for WAMR
v1.1 in SGX, then again for WAMR v1.2 in SGX, etc). We
detail this phase below in Section 6.1. In the attack phase,

9



Figure 8. Overview of the end-to-end attack steps.

the attacker then single-steps the victim enclave executing
in production mode while the confidential WASM program
is being interpreted. In this phase, the attacker obtains a
single trace of IMs that need to be segmented correctly
before matching each segment with the previously profiled
candidate sets. We describe this phase in Section 6.2.

6.1. Profiling Phase

In this phase, the attacker’s goal is to profile the target
translator and generate patterns of traces for each WASM
instruction. We use these patterns to build candidate sets and
to segment the IMs that will be collected during the attack
phase. To fulfill this goal, the attacker collects IMs of known
enclaves using the methodology described in Section 4.
Additionally, in this phase, the attacker can control (and
knows) the code and inputs of the enclave, and can run the
enclave in debug mode. Debug mode allows the attacker to
save the Instruction Pointer (IP) together with the IM.

As mentioned above, a different dataset needs to be
built for each specific translator that will be used as public
code (cf. Section 2) in the victim enclave. Meaning that
at the start of the profiling phase, the attacker instantiates
the specific translator of the victim, and profiles it from an
attacker controlled enclave. To get as much information as
possible, the attacker wants to execute a program that uses
every WASM instruction and feeds diverse classes of inputs
to each WASM instruction4. We use the official WASM
test suite [37] for this purpose. This suite is maintained by
the WebAssembly Working Group and is normally used to
test the adherence of new compilers and interpreters to the
WASM specification.

When we single-step the WASM test suite, multiple
WASM instructions are executed for each test. Just like in
a normal attack, we thus get a long trace of IMs for each
test. However, segmenting the trace in this phase is feasible
because: i) we know what WASM instructions are executed;
ii) we have the IP information included in each IM. Hence,

4. Feeding different input values is important because it allows to reach
good coverage. The same WASM instruction might be executed by a
different set of x86 instructions depending on what inputs are given to
it, as we discuss in Section 6.2.

we can use the IP to automatically reference the translator
source code, and trivially segment the IM trace.

In the attack phase, the attacker does not have access
to the IP. Nevertheless, we empirically found that the fol-
lowing two pieces of information within IMs are sufficient
to segment any trace perfectly for the tested translators: the
code page number that was accessed; and whether the x86
instruction performed a memory read, a memory write, or no
memory access. Given that this information is also sufficient
for the rest of the attack, we represent each IM with a string
composed of two parts: (i) the code page number; and (ii)
the memory access type. For instance, 1r represents the IM
of an x86 instruction that was executed from page number
1 and made a memory read. Similarly, 1w and 1- refer to a
memory write and to no memory access, respectively, from
an instruction executed on page 1. To represent a collected
WASM segment, we concatenate the symbols for the various
IMs belonging to that WASM instruction (according to the
IP information). We refer to this string as the pattern for
a particular WASM instruction. The main role of WASM
instruction patterns is to leverage regular expressions to
segment the instruction trace and to create candidate sets.

6.1.1. Profiling the translators. To leverage the IP infor-
mation to segment a trace, we observe that certain marker
IPs always appear in between two WASM instructions.
These markers can then be used to segment in the profil-
ing phase. We discuss these markers for both loading and
interpreting in the following.

WAMR loader and wasmi. During its loading phase,
WAMR loops through each instruction, as shown in Listing 1.
wasmi works similarly both in the loader and interpreter
(see wasmi code links [20]), with the exception that a
function call is made on each loop iteration for the loader.
Since each WASM instruction is loaded in one loop iter-
ation, the beginning and the end of the loop is a good
candidate to choose as segmentation marker. By manually
inspecting the binary of the WAMR loader and the wasmi
interpreter, we found the addresses of the first instruction
of this loop and the first instruction outside of the loop.
For the wasmi loader we use the address of the function
entry point and return address, since it is a more precise

10



measuring point. Segmenting the WAMR loader and wasmi
interpreter (and loader) execution trace is straightforward
with knowledge of the IP: whenever we encounter the IP
of the first loop instruction (function entry point) in the
IM trace, we start a new segment. When we encounter
the IP of the first instruction outside of the loop (function
return address), we stop the segment generation. All the
IM collected that do not belong to the loop (function) are
assigned to a special null segment. This gives us a pattern
for each loop iteration (function call). Then, since we know
what WASM instructions are executed in the test suite, we
can assign the correct WASM instruction to each segment.
The quickest way to obtain the list of WASM instructions
being executed, is to run a second, modified, version of the
translator that print out which instruction is being parsed in
each loop iteration (function call). The modified translator is
only used to produce the list of executed WASM instructions
and not to collect IMs, since then this translator would not
exactly match the version used by the victim.

WAMR Interpreter. In the interpreter phase, the WAMR
control flow is more involved than in the WAMR loading
phase and wasmi. The interpreter executes one instruction,
then fetches the pointer of the next instruction from memory
and directly jumps to it – without performing any loop
or function call. Crucially, every jump to the next WASM
instruction is implemented as an indirect jump (e.g., jmp
*rax). Thus, to automatically segment the execution trace
of the interpreter, we look for indirect jumps in the execution
trace. Since we have the IP for each IM, we can check on
the WAMR interpreter source code whether the instruction
at that IP is an indirect jump. Whenever we encounter an
indirect jump, we start a new segment and add the previous
one to our database5. Similarly to the loader, we need to
label the segments: we again modified the WAMR interpreter
to print the instruction label every time it starts interpreting
a new instruction. As metioned above, this modified version
is only used to produce the WASM instruction labels that
are assigned to the segments.

The same profiling process can be used on other transla-
tors: fundamentally what the attacker needs is a way to find
instructions boundaries based on the IP (either by manual
inspection or automatically) and a way to map each segment
to (known) IR (e.g., WASM) instructions labels.

6.1.2. Fused Instructions Handling. So far, the way we
described the patterns for WASM instructions does not prop-
erly account for fused instructions from the CPU: separate
x86 instructions that the CPU executes as one. The problem
is that we observed that fused instruction pairs can some-
times still execute un-fused. Unfortunately, this leads to the
pattern of WASM instructions being non-deterministic. We
report an explanation of this phenomenon in Appendix D.

Theoretically, we could collect every possible variation
of one WASM instruction, repeating a trace collection many
times until we get all possible patterns. However, this

5. This approach only works if indirect jumps are used only at the
boundary between two instructions, as is the case in the WAMR interpreter.

approach is infeasible in practice for two reasons. First,
since when interrupted the CPU non-deterministically fuses
instructions, collecting all possible patterns requires many
repetitions and is not guaranteed to terminate. Second, the
number of different traces needed to be collected grows
exponentially with the number of possible fused instruction
pairs. Just 10 fused instructions pairs in a trace require 1024
patterns to be collected and stored.

We addressed this issue by detecting which IM could be
related to fused instructions and then saving only the fused
version of the pattern. This is done by cross-referencing the
x86 instructions in the source code of the translators with
the IP recorded for the IM. Then, alongside the pattern,
we save an array of positions that could potentially be
“unfused”. This representation is not only compact (we need
to save only one version of the pattern) but also allows us to
match any combination of unfused instructions in the pattern
efficiently.

6.2. Attack Phase

Trace Segmentation. In the attack phase, the adversary
targets a production enclave which is given as input a con-
fidential algorithm and single-steps it to obtain an execution
trace. To segment the trace, as the IP is not available in
this phase, the attacker needs to use the library of segments
collected during the profiling phase. By representing the
full trace as a string (in the same way as we reduced each
segment to a pattern string while profiling), we can reduce
the segmentation task to the well-known string-matching
problem. Segmenting the trace then proceeds as follows. We
try to find which of the known patterns match the beginning
of the “trace string”. We usually obtain multiple matches
as some of the known patterns overlap. We then assume
that any of the matched patterns is correct and remove
it from the “trace string”, this gives us the first tentative
segment. If this segment is correct, we should be able to
match other patterns at the start of the remaining “trace
string”. If nothing matches, we backtrack and choose one
of the previously found valid patterns. We repeat this process
until the whole execution trace is segmented – meaning an
assignment to a segment is found for each IM. We will
discuss the performance of this algorithm in Section 7.

Creating and Matching Patterns. The approach described
above assumes that we can collect every possible pattern
for each WASM instruction. Whilst the WASM test suite
achieves wide coverage, some patterns needed to fully seg-
ment unseen binaries are still missing. In particular, while
linear WASM instructions (instructions that have no loops or
branching) exhibit only a single pattern, it is challenging to
build every pattern for instructions with loops and branches.
For instance, the WASM clz instruction is implemented in
the WAMR interpreter with a loop that iterates once for every
leading zero present in the input integer.

For cases of instructions with complex control flow, we
leverage the observation that, generally, their “prefix” x86
instructions and their “suffix” x86 instructions will be the

11



Figure 9. Timing distribution (N=11527) of the 5th x86 instruction of each
of the five listed WASM instructions (WAMR interpreter phase). The two
division ops seem to be following a different distribution than the others.

same, no matter how complex the internal control flow is.
Thus, when we encounter more than one pattern for the
same instruction, we automatically try to create a general
pattern – a single pattern that will capture several variations
of the instruction control-flow. We do this by arranging the
characters of the string representation in a tree where each
node of the tree is one token (code page number and access
type). We then add multiple patterns to the same tree and
extract the common prefixes from it. Particularly, after the
tree is assembled, we traverse it and collect every pattern
found up to 2-3 splits of the tree. We found this heuristic
to be quite accurate in practice. We use the same process to
find common prefixes and suffixes.

Between matching for common pre- and suffixes and
accounting for variable numbers of instructions due to fused
instructions, we found that the most convenient way to syn-
thesize patterns was through regular expressions (regexes).
This allowed us to use existing matching engines and rapidly
prototype different matching configurations. We automati-
cally generated regexes for each possible segment while also
keeping the regexes’ complexity within bounds.

Segment Classification. As discussed above, trace seg-
mentation and segment classification are inherently linked
tasks. Given a correct segmentation, we already get a pos-
sible list of candidate WASM instructions for each segment
“for free”: those are the instructions whose known patterns
matched the segment. In fact, this is how we generated the
candidate sets for WASM that we discussed in Section 5.3.
Recall that segments are generated only using the code pages
and the memory access type. Remarkably, this information
alone is so accurate to not only segment the trace but also
to correctly classify up to 80% of the WASM ISA.

Candidate Sets Pruning. We investigate whether we can
further reduce the candidate set size for the remaining 20%
of the WASM ISA where there is more than one candidate.
In particular, IMs also contain the time spent executing
individual x86 instructions, a feature we have not used so far
in our attack, as it is not fully deterministic. We explore the
potential of using time measurements to further prune can-
didate sets by using a concrete candidate set obtained from
the WAMR interpreter, consisting of the following WASM

instructions: F32_DIV, F64_ADD, F64_DIV, F64_MUL,
and F64_SUB. Manual inspection of the interpreter’s binary
reveals that all of these WASM instructions are expanded
into 9 x86 instructions. However, among these 9, only the
fifth x86 instruction differs between the various WASM in-
structions. Therefore, any potential timing difference should
be visible only in the 5th instruction6. The distribution of
the recorded timings of the 5th x86 instruction is depicted in
Fig. 9. While the timing distributions mostly overlap, they
still exhibit some differences between them.

To demonstrate the significance of these timing dif-
ferences, we developed a basic classical machine learning
model that tries to classify between the aforementioned five
WASM instructions using only the timing data. A simple
random forest classifier [38] achieves around 45% accuracy,
significantly outperforming a random guess (which has 20%
accuracy). More details, including a confusion matrix, are
given in Appendix C.

In summary, the candidate sets that we presented in
Fig. 7 could be improved by including timing information.
However, the attacker would have to record multiple execu-
tions for the same confidential algorithm to establish some
confidence in the results. On the other hand, the information
used when segmenting is deterministic, so the attacker only
needs one execution of the confidential code to build the
candidate sets that were presented in Fig. 7, and we thus
deem the deterministic pipeline to be sufficient in practice.

7. Evaluation

We evaluated the methods and algorithms presented
in Section 6 by using an Intel SGX enclave running the
WAMR [19] runtime at commit version b554a9d and an en-
clave with a wasmi runtime at commit version 2ad9e4c.
To collect the patterns for each WASM instruction, we
single-stepped the two translators while they executed the
WASM test suite [37] (commit e87021b). We run only
tests that do not test for exceptions, as we are interested only
in correct programs, although it would be straightforward
to also include these tests. We focus on SGX due to the
availability of better tooling in this platform compared to
SEV. While the time needed to execute the attack will
differ between the two TEEs, the leakage numbers will be
identical. We discuss why this is the case in Section 9.

Pattern Generation. Overall, we profiled 21073 tests for
WAMR and 26315 for wasmi. Since wasmi does not fully
support the same extensions of the WASM ISA as WAMR,
not all the test suite test were compatible with it. To reach
an adequate coverage for wasmi we complemented the
test suite with the tests that are included in the wasmi
repository. Note that we single-step the tests with the en-
clave in debug mode, as we need the IP to produce the
segmentation patterns as discussed in Section 6.1. When
we are profiling the WAMR loader, we only single-step the
loader function (wasm_loader_prepare_bytecode).

6. We observed that surrounding instructions are also affected and exhibit
timing differences, albeit smaller ones.

12



When we are profiling the WAMR interpreter, we single-step
only the interpreter’s main function (wasm_interp_ca
ll_func_bytecode). For the wasmi loader we used the
Compiler::compile_instruction function, and for
the interpreter the Interpreter::do_run_function
function. By monitoring the program counter after the trace
collection, we observed that we can very reliably single-step
the enclave through interrupts, as no instruction was skipped
for any of the tests in the test suite. Hence we run each
test only once. In our machine (with an Intel i9-9900KS
CPU), 36 hours for the WAMR and wasmi interpreter. It
took about 24 hours for the WAMR loader, while we were
able to shorten the time for the wasmi loader to 3 hours by
executing only non-redundant tests. In total, we found 1576
(153) unique patterns for the WAMR (wasmi) loader and
345 (177) unique patterns for the WAMR (wasmi) interpreter.
Using the methods described in Section 6.2, we then created
137 (57) regular expressions for the WAMR (wasmi) loader
patterns and 133 (128) for the WAMR (wasmi) interpreter.

Open world attack. The SotA adversary can be instantiated
in practice, and thus we performed our evaluation with real-
world experiments. To test the generality and usefulness
of the patterns, we used them to classify single WASM
instructions in three synthetic programs. One of the pro-
grams is written in C and computes various cryptographic
functions. The other two are written in Rust. One is part of
a chess engine [21], while the other computes the hash of
its inputs. We compiled these programs to WASM and then
gave them as input to an initial enclave running WAMR. We
single-stepped this enclave in production mode (i.e., without
getting the IP information). Not all possible instruction
patterns of these programs were present in the test suite.
We verified this by naively trying to match the patterns we
collected from the test suite and found that some parts of
the trace could not be segmented. However, we were able to
fully segment the trace using generalized regex patterns (cf.
Section 6.2). The C code, the Rust chess code, and the hash
code respectively executed 474M , 431M , and 62k WASM
instructions. When loading the code, they parsed 9k, 38k,
and 49k WASM instructions, respectively. Single-stepping
the interpreter phase took around 10 hours for both the chess
engine and the C code and a couple of seconds for the hash
engine. Single-stepping the loading phase completed in less
than 5 min. Roughly the same amount of time was required
to segment the traces.

From the WAMR loading phase information, we perfectly
recover 46%, 49%, and 50% of all the instructions in the
C code, the Rust chess engine, and the Rust hash code,
respectively. At least 65% of the instructions belong to a
candidate set of size ≤ 3 in these three programs. Only look-
ing at the WAMR interpreter phase, we recover around 28% of
instructions with perfect information. These percentages are
obtained from a single execution trace and without taking
into consideration the execution time of the instructions.

Closed world attack. An application of the recovered
WASM instruction traces is using it to classify which pro-
gram or library is executing in the TEE among a fixed known

set. For instance, this allows checking if a vulnerable version
of a library is present in the confidential code supplied to
the enclave. This is a useful building block for other attacks
or could be used to check license agreements violations.
Knowing that the confidential code belongs to a specific
set of programs is an example of prior information (cf.
Section 2.1) and therefore forms a closed world analysis.
A closed world setting might occur in different ways, to
name two: the attacker might know that the victim is linking
against a set of (public) pre-compiled binaries; or the exact
compiler version and compilation flags used by the victim.

IR execution is particularly vulnerable to this classifi-
cation task compared to native execution. This is because
in native execution the attacker can only measure the in-
structions from the executed code paths. This implies that
the attacker would need to either know the input of the
enclave or have a trace for every possible code path of the
target function/library, which is being checked for presence
in the enclave. On IR execution, on the other hand, the
loading phase is particularly well suited to match known
segments of code. This is because, generally, instructions are
parsed sequentially and in the same order across executions,
no matter what other inputs are provided to the enclave.
Additionally, functions are also parsed independently in
the WAMR loader, allowing the attacker to even check for
individual matching function signatures of a library.

We note that smaller functions are generally harder
to classify than larger ones (where it might be sufficient
to just match with 100% confidence a couple of marker
instructions in them). We thus tested several small functions
by trying to match their presence in a larger library. We
took a part of the Go Ethereum implementation [39] that
supports compilation to WASM and used it as a test library.
We copied the implementation of 10 individual arithmetic
functions (responsible for handling big number operations)
of this project and used them in smaller programs. These
smaller programs simply contain a main function that calls
the copied library functions. We then collected a trace of the
loading phase of these small programs and segmented their
WASM instructions. Finally, we tried to match the traces of
the individual functions into a trace of the loading phase of
the library in WAMR. We were able to perfectly match the
smaller functions in the trace of the library, thus demon-
strating that closed-world function classification is practical
in the WASM system and can be used to classify which
confidential WASM program is running in the enclave.

8. Related Work
In this section, we discuss which side-channel attacks on

TEEs we build upon and how they influence the information
we assume the attacker gets access to (c.f., Section 4). Note
that generally, these side channels are developed to leak
data from enclaves given the knowledge of the source code.
However, in our setting, we need to adapt them to work
without any prior knowledge of the source code.

Stack and Memory Access. Page table-based attacks on
Intel SGX exploit the untrusted OS role in managing the

13



page tables for enclaves [22]. The page faulting mechanism
can be abused [40] to notify the attacker through page faults
of enclave code and data accesses. Similarly, the access
and dirty bits of the page table entries can be used to
monitor read and writes [26, 27] accesses performed by the
enclave. Monitoring these bits while single-stepping gives
the attacker a per-instruction resolution of these values.
Moreover, the attacker can also detect control-flow changes
if the instruction jumps/branches to another page. Note that
these attacks are completely deterministic and noise-free.

Microarchitectural Structures. Additional information can
be extracted from the numerous microarchitectural details
made available to the OS. While performance counters are
not updated in enclave mode, their values, as measured from
an attacker-controlled program, can still be influenced by
the enclave execution. It is also worth mentioning that the
last branch record (LBR), given knowledge of the location
and target of jumps in an enclave, can be used to test for
branching conditions [28]. It is feasible to extract the LBR
given the knowledge of the code, but it is challenging to
employ this side channel in our setting given that we do not
know a priori the address of the jumping instructions in the
confidential code.

Instruction Timing. Instruction timing is considerably nois-
ier than any previously described attack. To estimate the best
resolution available to the attacker, we describe how related
work leaks data from enclaves despite the noisy measure-
ments. Nemesis [25] observed that while single-stepping via
interrupts, the interrupt delivery time is dependent on the
instruction executed by the enclave. Usually, the attacks that
leverage these timing measurements [36, 25, 41] perform
multiple thousands of measurements for a single instruction
to reduce the noise. We note that repeating measurements
is not trivial and either requires the attacker’s capability of
re-running the enclave arbitrarily [25] or specific instruc-
tions before the measurement to launch a microarchitectural
replay attack [41]. Even with the ability to repeat measure-
ments, these attacks have a resolution of 40− 100 cycles.

Port Contention. The final source of information we con-
sider is related to monitoring CPU port contention. Several
attacks have demonstrated that this is a practical side-
channel attack [42, 43]. However, they require repeated ex-
periments to extract a signal from their noisy measurements.
Nevertheless, we assume complete knowledge of the exact
functional units used in the ideal attacker in Section 5.

Summary. We chose to give the SotA attacker an even better
timing resolution than what is currently feasible by allowing
them a 10 cycles resolution from a single run. Note that
we also study an ideal attacker which, among other things,
is cycle accurate and can perfectly monitor the CPU port
utilization. As discussed in Section 7, despite these capabil-
ities, both attacker models leak very little information from
the native system. On the other hand, using only controlled-
channel information is enough in the WASM system to leak
the vast majority of the ISA, highlighting the magnitude of
the leakage amplification between the two systems.

9. Discussion

Applicability to other TEEs. To execute the attack we need
the following primitives (cf. Section 6.1): i) single-stepping
each instruction, ii) getting page-level memory information
for each instruction, including which code page was ac-
cessed and whether the instruction performed a read, write,
or no access. As long as an attack makes this information
available on the target TEE, and if the same translator code
is being targeted, the leakage will be exactly the same as
depicted in Fig. 7. In fact, the translator can even (and will)
slightly differ: the WASI interface is generally implemented
differently on AMD SEV compared to SGX. Crucially,
however, the code we targeted to compute the candidate
sets does not include the WASI interface, so the leakage
numbers provided are not affected by this difference.

Concurrently an attack framework has been developed
for AMD SEV, dubbed SEV-Step [30], that satisfies all of
the requirements mentioned above. With SEV-Step it has
been demonstrated that the guest VM OS events can be
suppressed and filtered out to target only a victim application
running on the guest. Thus, as long as the same WAMR and
wasmi code as SGX is used in SEV, the results on leakage
presented in Section 6 apply 1:1 to SEV as well. What
changes between the two systems is how long it takes to run
the end-to-end attack (due to hardware differences). Thus,
the duration of the attack presented in Section 7 will look
different on SEV.

Finally, other frameworks have recently emerged for
other TEEs allowing the attacker to gather similar side-
channel information. For instance, TDX-Step [44] for Intel
TDX, and Load-Step [45] and Cachegrab [46] for ARM
Trustzone.

Detectability of the attack. As discussed in Section 7,
single-stepping the enclave execution significantly delays
the normal execution of the confidential code. While this
might seem a good way to detect that such an attack is
taking place, our attack on WASM requires a single victim
run. Since the cloud provider is malicious (cf. Section 2.1),
they can drop network packets after the confidential code
has been loaded. To the victim this would appear as if the
guest VM/SGX enclave is unreachable (which can happen
even without an attack). Thus detection alone is not a viable
defense, and rather the approaches that we discuss next
should be considered in a production deployment.

Defenses. For SGX, an effective defense against our attack
is AEX-Notify [47] which prevents us from reliably single-
stepping the enclave and hence building a complete trace of
IM. Without a complete trace we cannot create segments,
and without segments we cannot classify WASM instruc-
tions. We recommend any project that aims to achieve code
confidentiality in SGX to apply this defense. To the best of
our knowledge, no similar defense yet exists for SEV.

14



10. Conclusions
We studied two different approaches commonly used

for deploying confidential code into TEEs – deploying na-
tive binaries and intermediate representation (IR) – against
state-of-the-art side-channel attacks. We developed a novel
methodology to analyze the side-channel leakage of these
approaches. We experimentally validated our methodology
on nine modern microarchitectures and showed that IR-
based confidential code deployments amplify any leakage
found in native execution deployments. We showed that
in an open-world setting (without prior knowledge of the
confidential instructions) native execution results in limited
leakage even against an ideal attacker, while next to no code
confidentiality against a state-of-the-art attacker was present
when using WASM as an IR. While IR execution is already
unsafe even without adding prior knowledge capabilities, we
leave to future work the task of investigating whether native
execution still holds enough confidentiality guarantees in
this setting.

Code availability. The source code developed for this paper
is available at the following link: https://github.com/dn0sa
r/TEE-WASM-Code-Extraction

References
[1] I. Corporation. Intel Software Guard Extensions. https://so

ftware.intel.com/en-us/sgx.
[2] Advanced Micro Devices Inc. AMD Secure Encrypted Vir-

tualization (SEV). https : / / developer . amd . com / sev/. Ac-
cessed: January 2020.

[3] Confidential Computing concepts — Confidential VM. http
s://cloud.google.com/compute/confidential-vm/docs/about-
cvm. Accessed: August 2022.

[4] Microsoft Docs: Build with SGX enclaves - Azure Virtual
Machines. https://docs.microsoft.com/en-us/azure/confident
ial-computing/confidential-computing-enclaves. Accessed:
August 2022.

[5] Azure Confidential VM options on AMD. https://docs.micr
osoft.com/en-us/azure/confidential-computing/virtual-mac
hine-solutions-amd. Accessed: August 2022.

[6] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M.
Peinado, G. Mainar-Ruiz, and M. Russinovich. “VC3:
Trustworthy Data Analytics in the Cloud Using SGX”. 2015
IEEE Symposium on Security and Privacy.

[7] E. Bauman, H. Wang, M. Zhang, and Z. Lin. “SGXElide:
Enabling Enclave Code Secrecy via Self-Modification”.
Proceedings of the 2018 International Symposium on Code
Generation and Optimization (CGO 2018).

[8] T. Lazard, J. Götzfried, T. Müller, G. Santinelli, and V.
Lefebvre. “TEEshift: Protecting Code Confidentiality by
Selectively Shifting Functions into TEEs”. Proceedings of
the 3rd Workshop on System Software for Trusted Execution
(SysTEX ’18).

[9] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B.
Lee. “OBFUSCURO: A Commodity Obfuscation Engine
on Intel SGX”. Proceedings 2019 Network and Distributed
System Security Symposium (NDSS ’19).

[10] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni. “Twine:
An Embedded Trusted Runtime for WebAssembly”. 2021
IEEE 37th International Conference on Data Engineering
(ICDE).

[11] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P.
Pietzuch, and R. Kapitza. “TrustJS: Trusted Client-Side
Execution of JavaScript”. Proceedings of the 10th European
Workshop on Systems Security (EuroSec’17).

[12] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza.
“AccTEE: A WebAssembly-Based Two-Way Sandbox for
Trusted Resource Accounting”. Proceedings of the 20th
International Middleware Conference (Middleware ’19).

[13] A. Baumann, M. Peinado, and G. Hunt. “Shielding Appli-
cations from an Untrusted Cloud with Haven”. ACM Trans.
Comput. Syst. (2015).

[14] Enarx: WebAssembly + Confidential Computing. https://en
arx.dev.

[15] M. Brossard, G. Bryant, B. El Gaabouri, X. Fan, A. Fer-
reira, E. Grimley-Evans, C. Haster, E. Johnson, D. Miller,
F. Mo, D. P. Mulligan, N. Spinale, E. van Hensbergen,
H. J. M. Vincent, and S. Xiong. Private delegated com-
putations using strong isolation. Technical report. 2022.

[16] Edgeless Systems: Confidential computing at scale for ev-
eryone. https://www.edgeless.systems.

[17] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,
and C. Fetzer. “SCONE: Secure Linux Containers with Intel
SGX”. 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16).

[18] Awesome WebAssembly Languages. https://github.com/app
cypher/awesome-wasm-langs. Accessed: August 2022.

[19] Wasmer - The Universal WebAssembly Runtime. https://g
ithub.com/bytecodealliance/wasm- micro- runtime. Target
loader code leading to leakage amplification: https://github
.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d
05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpr
eter/wasm loader.c#L6137 . Target interpreter code leading
to leakage amplification: https://github.com/bytecodeallian
ce/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4
ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm interp fa
st.c#L996.

[20] Wasmi - WebAssembly (Wasm) Interpreter. https://docs.rs/w
asmi/latest/wasmi/. Target loader code leading to leakage
amplification: https://github.com/paritytech/wasmi/blob/0
1423af0caebcd201542d2f5333ba037e85c419f/crates/wasm
i/src/engine/executor.rs#L186.

[21] Perft Test Benchmarks for crates.io/chess/,
crates.io/shakmaty/. https : / / crates . io / crates / chess.
Version: 3.1.1.

[22] V. Costan and S. Devadas. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086.

[23] Advanced Micro Devices Inc. AMD SEV-SNP: Strengthen-
ing VM Isolation with Integrity Protection and More. https
://www.amd.com/system/files/TechDocs/SEV-SNP-strengt
hening-vm-isolation-with-integrity-protection-and-more.p
df. Accessed: May 2022.

[24] J. Van Bulck, F. Piessens, and R. Strackx. “SGX-Step: A
Practical Attack Framework for Precise Enclave Execution
Control”. Proceedings of the 2nd Workshop on System
Software for Trusted Execution (SysTEX’17).

[25] J. Van Bulck, F. Piessens, and R. Strackx. “Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU
Interrupt Logic”. Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’18).

[26] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R.
Strackx. “Telling Your Secrets without Page Faults: Stealthy

15

https://github.com/dn0sar/TEE-WASM-Code-Extraction
https://github.com/dn0sar/TEE-WASM-Code-Extraction
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://developer.amd.com/sev/
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-computing-enclaves
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-computing-enclaves
https://docs.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions-amd
https://docs.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions-amd
https://docs.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions-amd
http://dx.doi.org/10.1109/SP.2015.10
http://dx.doi.org/10.1109/SP.2015.10
http://dx.doi.org/10.1109/SP.2015.10
http://dx.doi.org/10.1109/SP.2015.10
http://dx.doi.org/10.1145/3168833
http://dx.doi.org/10.1145/3168833
http://dx.doi.org/10.1145/3168833
http://dx.doi.org/10.1145/3168833
http://dx.doi.org/10.1145/3268935.3268938
http://dx.doi.org/10.1145/3268935.3268938
http://dx.doi.org/10.1145/3268935.3268938
http://dx.doi.org/10.1145/3268935.3268938
http://dx.doi.org/10.1145/3268935.3268938
http://dx.doi.org/10.14722/ndss.2019.23513
http://dx.doi.org/10.14722/ndss.2019.23513
http://dx.doi.org/10.14722/ndss.2019.23513
http://dx.doi.org/10.14722/ndss.2019.23513
http://dx.doi.org/10.1109/ICDE51399.2021.00025
http://dx.doi.org/10.1109/ICDE51399.2021.00025
http://dx.doi.org/10.1109/ICDE51399.2021.00025
http://dx.doi.org/10.1109/ICDE51399.2021.00025
http://dx.doi.org/10.1145/3065913.3065917
http://dx.doi.org/10.1145/3065913.3065917
http://dx.doi.org/10.1145/3065913.3065917
http://dx.doi.org/10.1145/3065913.3065917
http://dx.doi.org/10.1145/3361525.3361541
http://dx.doi.org/10.1145/3361525.3361541
http://dx.doi.org/10.1145/3361525.3361541
http://dx.doi.org/10.1145/3361525.3361541
http://dx.doi.org/10.1145/2799647
http://dx.doi.org/10.1145/2799647
http://dx.doi.org/10.1145/2799647
https://enarx.dev
https://enarx.dev
http://dx.doi.org/https://doi.org/10.48550/arXiv.2205.03322
http://dx.doi.org/https://doi.org/10.48550/arXiv.2205.03322
http://dx.doi.org/https://doi.org/10.48550/arXiv.2205.03322
http://dx.doi.org/https://doi.org/10.48550/arXiv.2205.03322
http://dx.doi.org/https://doi.org/10.48550/arXiv.2205.03322
https://www.edgeless.systems
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm_loader.c#L6137
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm_loader.c#L6137
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm_loader.c#L6137
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm_loader.c#L6137
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm_interp_fast.c#L996
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm_interp_fast.c#L996
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm_interp_fast.c#L996
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b554a9d05d89bb4ef28068b4ae4d0ee6c99bc9db/core/iwasm/interpreter/wasm_interp_fast.c#L996
https://docs.rs/wasmi/latest/wasmi/
https://docs.rs/wasmi/latest/wasmi/
https://github.com/paritytech/wasmi/blob/01423af0caebcd201542d2f5333ba037e85c419f/crates/wasmi/src/engine/executor.rs#L186
https://github.com/paritytech/wasmi/blob/01423af0caebcd201542d2f5333ba037e85c419f/crates/wasmi/src/engine/executor.rs#L186
https://github.com/paritytech/wasmi/blob/01423af0caebcd201542d2f5333ba037e85c419f/crates/wasmi/src/engine/executor.rs#L186
https://crates.io/crates/chess
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
http://dx.doi.org/10.1145/3152701.3152706
http://dx.doi.org/10.1145/3152701.3152706
http://dx.doi.org/10.1145/3152701.3152706
http://dx.doi.org/10.1145/3152701.3152706
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3243734.3243822
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck


Page Table-Based Attacks on Enclaved Execution”. 26th
USENIX Security Symposium (USENIX Security ’17).

[27] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter. “Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX”. Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’17).

[28] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M.
Peinado. “Inferring Fine-grained Control Flow Inside SGX
Enclaves with Branch Shadowing”. 26th USENIX Security
Symposium (USENIX Security ’17).

[29] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and
B. Sunar. “CopyCat: Controlled Instruction-Level Attacks
on Enclaves”. 29th USENIX Security Symposium (USENIX
Security ’20).

[30] L. Wilke, J. Wichelmann, A. Rabich, and T. Eisenbarth.
SEV-Step: A Single-Stepping Framework for AMD-SEV.
2023. arXiv: 2307.14757 [cs.CR].

[31] Wasmtime: A standalone runtime for WebAssembly. https
: / / github . com/bytecodealliance /wasmtime. Target loader
code leading to leakage amplification: https://github.com
/bytecodealliance/wasmtime/blob/1bf0c8c220e37c91cbe09
46d944bdb6f0c13e35c/cranelift/wasm/src/code translator.r
s#L118.

[32] Wasmer - The Universal WebAssembly Runtime. https://was
mer.io/. Target loader code leading to leakage amplification:
https://github.com/wasmerio/wasmer/blob/dce55432e64f5d
4d6b2b21b523aba2e8b1149b4a/lib/compiler-llvm/src/trans
lator/code.rs#L1416.

[33] Wasm Edge Runtime. https://wasmedge.org/. Target loader
code leading to leakage amplification: https://github.com
/WasmEdge/WasmEdge/blob/9f5408746a76dc345c75f478
0a357951992567ce/lib/executor/engine/engine.cpp#L88.

[34] Wasm3 - A fast WebAssembly interpreter, and the most
universal WASM runtime. https : / / wasmedge . org/. Target
loader code leading to leakage amplification: https://githu
b.com/wasm3/wasm3/blob/49290f19ff48c7aa59630a3f600
6a9305f13ee02/source/m3 compile.c#L2552, Jump table
definition: https://github.com/wasm3/wasm3/blob/49290
f19ff48c7aa59630a3f6006a9305f13ee02/source/m3 compil
e.c#L2257.

[35] A. Abel and J. Reineke. “uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Mi-
croarchitectures”. ASPLOS (ASPLOS ’19).

[36] I. Puddu, M. Schneider, M. Haller, and S. Capkun. “Frontal
Attack: Leaking Control-Flow in SGX via the CPU Fron-
tend”. 30th USENIX Security Symposium (USENIX Security
21).

[37] Official WebAssembly test suite. https://github.com/WebAs
sembly/spec/tree/main/test.

[38] T. K. Ho. “Random Decision Forests”. Proceedings of
3rd International Conference on Document Analysis and
Recognition. IEEE.

[39] Official Go implementation of the Ethereum protocol. http
s://github.com/ethereum/go-ethereum. Version 1.10.24.

[40] Y. Xu, W. Cui, and M. Peinado. “Controlled-channel at-
tacks: Deterministic side channels for untrusted operating
systems”. 2015 IEEE Symposium on Security and Privacy.
IEEE.

[41] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrel-
las, and C. W. Fletcher. “MicroScope: Enabling Microar-
chitectural Replay Attacks”. IEEE Micro (2020).

[42] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida
Garcı́a, and N. Tuveri. “Port Contention for Fun and Profit”.
2019 IEEE Symposium on Security and Privacy (SP).

[43] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi.
“ABSynthe: Automatic Blackbox Side-channel Synthesis
on Commodity Microarchitectures”. Proceedings 2020 Net-
work and Distributed System Security Symposium (NDSS).

[44] Intel Corporation. Intel Trust Domain Extension Research
and Assurance. https://www.intel.com/content/www/us/en
/developer/articles/technical/software-security-guidance/tec
hnical-documentation/tdx-security-research-and-assurance
.html. Version 1.0, 24 Apr 2023.

[45] Z. Kou, W. He, S. Sinha, and W. Zhang. “Load-Step: A
Precise TrustZone Execution Control Framework for Ex-
ploring New Side-channel Attacks Like Flush+Evict”. 2021
58th ACM/IEEE Design Automation Conference (DAC).

[46] K. Ryan. “Hardware-Backed Heist: Extracting ECDSA
Keys from Qualcomm’s TrustZone”. Proceedings of the
2019 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’19).

[47] S. Constable, J. V. Bulck, X. Cheng, Y. Xiao, C. Xing, I.
Alexandrovich, T. Kim, F. Piessens, M. Vij, and M. Silber-
stein. “AEX-Notify: Thwarting Precise Single-Stepping At-
tacks through Interrupt Awareness for Intel SGX Enclaves”.
32nd USENIX Security Symposium (USENIX Security 23).

[48] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer Manuals.

[49] Advanced Micro Devices. AMD64 Architecture Program-
mer’s Manual. Volume 2: System Programming.

Appendix A.
Responsible Disclosure

On 2 November 2022, we disclosed our findings to
the following companies promising code confidentiality in
TEEs: Veracruz (ARM) [15], Edgeless [16], Enarx [14], and
Scone [17]. Edgeless acknowledged receiving our report
but did not take any further steps. Enarx responded that
they are researching mitigations, while Scone told us they
are working on mitigating the reported issues. Veracruz re-
sponded that side channels are out of scope in their attacker
model. Nonetheless, they are working on clarifying their
documentation about the risks related to code confidentiality
in TEEs.

Appendix B.
x86 ISA Instruction Count

We focus only on the 64-bit version of the x86 architec-
ture when creating candidate sets. In building the candidate
sets for the microarchitectures supporting SGX and SEV,
we need to account for the fact that some instructions are
handled differently in these environments. Particularly, in
SGX, some of the instructions are illegal and thus will never
be called on bug-free enclaves. On SEV, all instructions are
allowed to execute; however, they will cause a hypervisor
intercept, thus leaking to the attacker which instruction was
executed. In the case of SGX, we never include illegal
instructions in a candidate set, while in the case of SEV,
we place the intercepted instructions in candidate sets of

16

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://arxiv.org/abs/2307.14757
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime/blob/1bf0c8c220e37c91cbe0946d944bdb6f0c13e35c/cranelift/wasm/src/code_translator.rs#L118
https://github.com/bytecodealliance/wasmtime/blob/1bf0c8c220e37c91cbe0946d944bdb6f0c13e35c/cranelift/wasm/src/code_translator.rs#L118
https://github.com/bytecodealliance/wasmtime/blob/1bf0c8c220e37c91cbe0946d944bdb6f0c13e35c/cranelift/wasm/src/code_translator.rs#L118
https://github.com/bytecodealliance/wasmtime/blob/1bf0c8c220e37c91cbe0946d944bdb6f0c13e35c/cranelift/wasm/src/code_translator.rs#L118
https://wasmer.io/
https://wasmer.io/
https://github.com/wasmerio/wasmer/blob/dce55432e64f5d4d6b2b21b523aba2e8b1149b4a/lib/compiler-llvm/src/translator/code.rs#L1416
https://github.com/wasmerio/wasmer/blob/dce55432e64f5d4d6b2b21b523aba2e8b1149b4a/lib/compiler-llvm/src/translator/code.rs#L1416
https://github.com/wasmerio/wasmer/blob/dce55432e64f5d4d6b2b21b523aba2e8b1149b4a/lib/compiler-llvm/src/translator/code.rs#L1416
https://wasmedge.org/
https://github.com/WasmEdge/WasmEdge/blob/9f5408746a76dc345c75f4780a357951992567ce/lib/executor/engine/engine.cpp#L88
https://github.com/WasmEdge/WasmEdge/blob/9f5408746a76dc345c75f4780a357951992567ce/lib/executor/engine/engine.cpp#L88
https://github.com/WasmEdge/WasmEdge/blob/9f5408746a76dc345c75f4780a357951992567ce/lib/executor/engine/engine.cpp#L88
https://wasmedge.org/
https://github.com/wasm3/wasm3/blob/49290f19ff48c7aa59630a3f6006a9305f13ee02/source/m3_compile.c#L2552
https://github.com/wasm3/wasm3/blob/49290f19ff48c7aa59630a3f6006a9305f13ee02/source/m3_compile.c#L2552
https://github.com/wasm3/wasm3/blob/49290f19ff48c7aa59630a3f6006a9305f13ee02/source/m3_compile.c#L2552
https://github.com/wasm3/wasm3/blob/49290f19ff48c7aa59630a3f6006a9305f13ee02/source/m3_compile.c#L2257
https://github.com/wasm3/wasm3/blob/49290f19ff48c7aa59630a3f6006a9305f13ee02/source/m3_compile.c#L2257
https://github.com/wasm3/wasm3/blob/49290f19ff48c7aa59630a3f6006a9305f13ee02/source/m3_compile.c#L2257
http://dx.doi.org/10.1145/3297858.3304062
http://dx.doi.org/10.1145/3297858.3304062
http://dx.doi.org/10.1145/3297858.3304062
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://github.com/WebAssembly/spec/tree/main/test
https://github.com/WebAssembly/spec/tree/main/test
http://dx.doi.org/10.1109/ICDAR.1995.598994
http://dx.doi.org/10.1109/ICDAR.1995.598994
http://dx.doi.org/10.1109/ICDAR.1995.598994
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
http://dx.doi.org/10.1109/sp.2015.45
http://dx.doi.org/10.1109/sp.2015.45
http://dx.doi.org/10.1109/sp.2015.45
http://dx.doi.org/10.1109/sp.2015.45
http://dx.doi.org/10.1109/mm.2020.2986204
http://dx.doi.org/10.1109/mm.2020.2986204
http://dx.doi.org/10.1109/mm.2020.2986204
http://dx.doi.org/10.1109/SP.2019.00066
http://dx.doi.org/10.1109/SP.2019.00066
http://dx.doi.org/10.1109/SP.2019.00066
http://dx.doi.org/10.14722/ndss.2020.23018
http://dx.doi.org/10.14722/ndss.2020.23018
http://dx.doi.org/10.14722/ndss.2020.23018
http://dx.doi.org/10.14722/ndss.2020.23018
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/tdx-security-research-and-assurance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/tdx-security-research-and-assurance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/tdx-security-research-and-assurance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/tdx-security-research-and-assurance.html
http://dx.doi.org/10.1109/DAC18074.2021.9586226
http://dx.doi.org/10.1109/DAC18074.2021.9586226
http://dx.doi.org/10.1109/DAC18074.2021.9586226
http://dx.doi.org/10.1109/DAC18074.2021.9586226
http://dx.doi.org/10.1145/3319535.3354197
http://dx.doi.org/10.1145/3319535.3354197
http://dx.doi.org/10.1145/3319535.3354197
http://dx.doi.org/10.1145/3319535.3354197
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf


Figure 10. Candidate set sizes’ distributions on the Skylake microarchitec-
ture for a SotA attacker in the native system with varying cycle accuracy
thresholds.

size 1. Next, we detail what instructions exactly end up in
this special classification for the two TEEs.

SGX. We used the information from the Intel SDM Man-
ual [48] Volume 3D Table 35-1 to find the criteria for
instructions not allowed in SGX. To summarize, instructions
with a privilege level lower than 3 and instructions that
perform I/O operations or that could access the segment
register are considered Illegal. Note that an instruction could
have an illegal version and a legal version. For instance, the
mov instruction can write to the segment registers, and that
version of the instruction is illegal.

SEV. Instructions that cause a hypervisor intercept on SEV
are reported in “Table 15-7. Instruction Intercepts” of the
AMD64 Architecture Programmer’s Manual [49]. Note that
there might be other conditions that cause intercepts, which
might leak information to the attacker, but we only consider
the instructions on that table in our calculation. Finally, the
dataset we used for the Zen microarchitecture was actually
obtained from information collected from a Zen+ CPU
from uops.info [35]. The Zen+ and Zen microarchitectures
support the exact same x86 instructions; however, the Zen+
does not provide support for SEV.

Appendix C.
Analysis of SotA Attacker Cycle Accuracy

To give an idea of the relationship between the strength
of the SotA attacker’s instruction cycle resolution and the
native system information leakage, we show in Fig. 10
how the candidate set sizes change with different thresholds
for the attacker’s cycle resolution. Furthermore, we report
the confusion matrix from a random forest classifier (as
mentioned in Section 6.2) in Fig. 11.

Figure 11. Confusion matrix of a simple random forest classifier for
five WASM instructions. The classifier is pretty confident about the two
divisions but cannot distinguish the other 3 instructions.

Appendix D.
Unfused instructions

When single-stepping with interrupts, fused instruction
pairs are generally stepped through atomically – thus, we
will only encounter one IM in the execution trace instead
of two. This phenomenon has also been documented in
previous work [36, 29]. However, while previous work
observed deterministic instruction fusion [29], we observed
that for the same pair of instructions in the program (at the
same virtual address), it could happen that the instructions
sometimes execute unfused. This is the case even when the
same input data is given to the program and both with and
without hyperthreading enabled. We hypothesize that this
behavior is due to the precise timing at which the interrupt
is delivered in relation to the stage of the execution of the to-
be-fused instruction pair. However, the timing at which the
interrupt is delivered cannot be controlled to such precision,
and therefore the behavior randomly occurs, albeit some-
what infrequently. Note that we collect significantly larger
instruction traces compared to [29] (e.g., some traces we
obtain have more than 1 billion instructions) and hence have
a higher likelihood of observing this behavior compared
to [29].

Appendix E.
Utility and applicability of the attack

Our study considered an attacker with the goal of re-
covering the ISA instructions of the confidential algorithm,
i.e., the opcodes. These results can be used in different ways:
we now discuss some possible practical attacks that leverage
such data.

Reverse-Engineering Algorithms. A reverse engineer that
wants to understand what the confidential algorithm does
can leverage our results on semantically equivalent instruc-
tions (see Section 4) to further reduce the number of candi-
date instructions and reconstruct the logic of the algorithm.
Note that our attacker only leaks the instructions but not

17



their operands. However, in a language like WASM, this
is irrelevant for most instructions since their operands are
implicit. For instance, an addition in WASM implicitly oper-
ates on the last two values present on the stack. Thus leaking
that an addition was performed is enough to also leak the
operands in this case. Note, however, that even in WASM,
some instructions take constant values as parameters. These
instructions can move values around on the stack based on
their operand. We leave the task of leaking the operands for
these instructions as future work.

Applicability to Other Languages. For our evaluation, we
chose WASM as the language to instantiate the particular
IR execution that we studied (cf. Section 3). However, some
code confidentiality designs in TEE (e.g., Scone [17]) also
support different interpreted languages, e.g., Python and
NodeJS. The methods we introduced in this paper can easily
be applied to analyze how much the translators of these
other languages amplify the instruction leakage. As far as
we are aware, their translators are not designed to provide
code confidentiality, so we expect them to exhibit similar
levels of leakage.

Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

The authors study to what extent confidentiality pro-
tections for code executing within trusted execution envi-
ronments (TEEs) are preserved in the face of side-channel
attacks that leverage single-step execution. The authors an-
alyze the potential leakage for both native and intermediate
representation (IR) instructions and develop a practical at-
tack for WebAssembly (WASM) IR, demonstrating that IR
code is significantly more vulnerable to side-channel attacks
than native code and quantifying the leakage.

F.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

F.3. Reasons for Acceptance

1) Important to understand the resilience of TEEs to side-
channel attacks against code confidentiality

2) Development and execution of a practical attack against
the WAMR and wasmi runtimes on Intel SGX

3) Useful study that rigorously quantifies the level of
leakage for both native and IR (WASM) code

18


	Introduction
	System and Attacker Model
	Attacker Model

	Leakage Analysis Overview
	Methodology
	Leakage Analysis
	Leakage in the Native System
	Ideal Attacker
	Leakage in the WASM System

	IR Instruction Leakage in Practice
	Profiling Phase
	Profiling the translators
	Fused Instructions Handling

	Attack Phase

	Evaluation
	Related Work
	Discussion
	Conclusions
	Appendix A: Responsible Disclosure
	Appendix B: x86 ISA Instruction Count
	Appendix C: Analysis of SotA Attacker Cycle Accuracy
	Appendix D: Unfused instructions
	Appendix E: Utility and applicability of the attack
	Appendix F: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance


