Using Local Cache Coherence for Disaggregated Memory Systems

Irina Calciu M. Talha Imran Ivan Puddu
Graft Google ETH Zirich
Sanidhya Kashyap Hasan Al Maruf Onur Mutlu
EPFL University of Michigan ETH Zirich
Aasheesh Kolli
Google

ABSTRACT

Disaggregated memory provides many cost savings and resource
provisioning benefits for current datacenters, but software systems
enabling disaggregated memory access result in high performance
penalties. These systems require intrusive code changes to port
applications for disaggregated memory or employ slow virtual
memory mechanisms to avoid code changes. Such mechanisms
result in high overhead page faults to access remote data and high
dirty data amplification when tracking changes to cached data at
page-granularity. In this paper, we propose a fundamentally new
approach for disaggregated memory systems, based on the obser-
vation that we can use local cache coherence to track applications’
memory accesses transparently, without code changes, at cache-line
granularity. This simple idea (1) eliminates page faults from the
application critical path when accessing remote data, and (2) de-
couples the application memory access tracking from the virtual
memory page size, enabling cache-line granularity dirty data track-
ing and eviction. Using this observation, we implemented a new
software runtime for disaggregated memory that improves average
memory access time and reduces dirty data amplification.

1 INTRODUCTION

Modern data centers suffer from memory over-provisioning and
under-utilization, with reports of memory utilization stagnating
around 65% [78]. Disaggregated memory [11, 32, 37, 50, 79, 82] can
address these issues, but systems that enable adoption of disag-
gregated memory either cause intrusive code changes to existing
applications, require a change in the programming model for new
applications or come with high performance penalties to achieve
these changes transparently, without application changes.
Transparent systems use various kernel subsystems [10, 15, 36,
57, 72] or redesign the kernel altogether [71] to avoid application
code changes. Fundamentally, they all rely on the core virtual mem-
ory mechanism for three essential functions: (1) fetching and caching
remote data by first detecting remote accesses using page faults,
then caching the remote pages in a local DRAM cache; (2) track-
ing dirty data among the cached pages by write-protecting the
pages and causing a write page fault on the first write to each page;
and (3) evicting cached pages from the local DRAM cache, which
IThis paper is based on an earlier work: Rethinking Software Runtimes for Disag-
gregated Memory, in Proceedings of the Twenty-Sixth International Conference on

Architectural Support for Programming Languages and Operating Systems, April
19-23, ACM 2021. https://doi.org/10.1145/3445814.3446713

Operating Systems Review, SIGOPS, 2023
2023.

requires marking the pages as not present and flushing the transla-
tion look-aside buffers (TLBs). Virtual memory provides application
transparency, but results in high overhead and causes a significant
drop in application performance, even when the amount of remote
data accessed is small. Moreover, virtual memory requires moving
and tracking data at page-granularity, with a page size of 4KB or
higher. In contrast, throughout their lifetimes, applications write
a small part of each page, causing large dirty data amplification
and poor network utilization, by re-writing the same data that is al-
ready in remote memory. We analyzed multiple production-quality
applications and measured a dirty data amplification between 2X
and 31X for 4KB pages (§2).
Some systems [29, 30, 61, 67] avoid page faults and work at
a finer-granularity than pages (objects), but require specialized
application changes and thus sacrifice transparency. In practice,
rewriting existing applications for disaggregated memory is error-
prone and requires expensive engineering resources and expertise.
Our key insight is that the local cache coherence proto-
col can provide better support for disaggregated memory,
by transparently tracking applications’ memory accesses at
cache-line granularity, without page faults. We describe a refer-
ence architecture that provides the necessary hardware primitives
using cache-coherent field programmable gate arrays (§4.2), which
we expect to become available with the adoption of CXL-based
platforms [74]. We designed and implemented Kona, a software
disaggregated memory system that rethinks the design of each of
the three disaggregated memory functions performed by virtual
memory in current systems (fetching remote data, tracking dirty
data and evicting cached pages) to rely on new hardware primi-
tives enabled by the cache coherence protocol (§4). Kona moves
high-overhead virtual memory operations off the critical path of
execution, and tracks dirty cache-lines, decoupling tracking and
movement from the virtual memory page size, for a 6.6X speedup.
To evaluate Kona’s benefits and overheads without the hardware
support, we developed several tools (§4.4) that allow us to simulate
or emulate the necessary hardware primitives. Thus, we show that
Kona improves average memory access time when accessing disag-
gregated memory by 1.7X compared to LegoOS [71], and reduces
write amplification compared to page-based systems by 2-10X, by
using cache-line granularity.
In summary, we make the following contributions:
e We show that current systems for disaggregated memory
result in large overhead and dirty data amplification (§2).
e We propose new hardware primitives for disaggregated mem-
ory based on the local cache coherence protocol (§4.2) and

Operating Systems Review, SIGOPS, 2023

we design and implement Kona, a software system that uses
the new hardware primitives for efficient execution (§4).

e We design and implement multiple emulation and simulation
tools (§4.4) and we use them to evaluate Kona (§5).

2 DISAGGREGATED MEMORY SYSTEMS
TAXONOMY AND TRADEOFFS

We provide a taxonomy of disaggregated memory systems, and

discuss their tradeoffs. We classify the various systems based on the

access and tracking granularity, programability and the mechanism

employed to offer access to disaggregated memory (Table 1).

Table 1: Taxonomy of disagg. memory systems.

Disagg. memory

Granularity

Programability | Mechanism

Page-based [10, 36]
Object-based [29, 30, 61
Kona

]

coarse (page) (-)
fine (object) (+)

cache-line (+)

transparent (+)
app-specific (-)
transparent (+)

virtual memory
code changes
cache coherence

Page-based disaggregated memory systems offer access to dis-
aggregated memory transparently by using virtual memory [10,
36, 45, 72] to cache remote pages into a local software-managed
DRAM cache, trading off the granularity of access and application
performance. These systems use page faults to fetch data from
a remote host using a custom page fault handler. They use write
page faults to track dirty data: a page is initially marked as read-
only when it is first fetched into the local DRAM cache and marked
dirty if the application modifies it, by triggering a page fault to
lift the write-protection on the page. Periodically, the local cache
evicts some cached remote pages to make room for new remote
pages. Pages chosen for eviction that have not been modified since
they were last brought into the local DRAM cache can be silently
evicted, while dirty pages need a writeback to the remote host.

By relying on the virtual memory mechanisms, disaggregated
memory operations in page-based systems suffer from high over-
head. (1) Fetching remote data incurs large penalties due to page
faults and TLB invalidations. In addition, page faults cause the pro-
cessor to flush its instruction pipeline, pollute CPU caches, and
reduce the CPU prefetcher’s effectiveness, as it cannot prefetch
past a page fault. (2) Dirty data tracking and evictions suffer from
large overheads associated with write page faults, which requires
stopping the application to modify page tables and invalidate the
TLBs. For example, we measured a 35% decrease in throughput for
Redis [7] due to write page faults. (3) Tracking pages results in high
dirty data amplification, which is the ratio of data marked as dirty
using the tracking granularity to the actual number of bytes written
by the application. Often, applications access only a small part of a
page [9]. Therefore, using page granularity for tracking dirty data
results in high amplification and poor network utilization, because
more data is transferred over the network than necessary. Table 2
shows the dirty data amplification in several applications measured
using dynamic binary instrumentation with Intel Pin [5].

In contrast to page-based systems, object-based disaggregated
memory systems provide fine-grain access to remote data using data
structures or key-value abstractions [29, 30, 61, 67]. To achieve good
performance, these systems trade off programability by relying
on semantic information communicated by the programmer and
require intrusive code changes to port legacy applications.

Table 2: Dirty data amplification for different tracking gran-
ularities. The amplification is measured against the number
of dirty bytes.

Memory Dirty data amplification
Application (GB) 4KB page | 2MB page || 64B cache-line

Redis-Rand 4 31.36 5516.37 1.48
Redis-Seq 0.13 2.76 54.76 1.08
Linear Regression 40 231 244.14 1.22
Page Rank 4.2 438 80.71 1.47
Label Propagation 5.6 8.14 95.00 1.85
VoltDB 11.5 3.74 79.55 1.17

We leverage the main benefits from both types of systems by
proposing new hardware support based on the local host’s cache
coherence mechanism. Our system, Kona, maintains application
transparency, while accessing memory at a finer-granularity (cache-
line) and can support legacy applications without modifying them.

3 DESIGN PRINCIPLES

We propose a new class of software systems for disaggregated mem-
ory that uses the unmodified local host’s hardware cache coherence
protocol to transparently track reads and writes performed by an
application and thus speed up critical operations previously realized
using virtual memory. Below, we outline the key design principles
we employed and we discuss the benefits that our approach provides
over a page-based disaggregated memory system.

Leverage cache coherence to track memory accesses. Applica-
tions that access disaggregated memory suffer from a semantic gap
that is either resolved explicitly by the application through code
changes or through expensive virtual memory operations. Our main
observation is that the hardware already tracks memory accesses,
through memory coherence. If the hardware exposed primitives
that cached remote data and informed the software runtime of lo-
cal modifications, the remote memory runtime could stop using
inefficient virtual memory for these operations. Thus, we can avoid
page faults, write page faults and TLB shootdowns.

Decouple data movement granularity from the page size.
As both application data and memory sizes are increasing, so are
translation overheads. Therefore, it is natural for applications to
improve performance by using large pages, but for applications that
need to move data over the network, the drawbacks of dirty data
amplification when using large pages outweigh the positives [77].
Our approach uses cache-line granularity to track data accesses
and movement, irrespective of the virtual memory page size. By
decoupling the size of the tracked data from the page size, we enable
applications to benefit from huge pages without suffering from data
movement amplification (§5).

Separate data and control paths. Remote data access is on an
application’s critical path, thus low-latency execution is paramount.
Nevertheless, systems for disaggregated memory incur page faults
on this critical path, significantly increasing the latency of a memory
access [11]. For an efficient transparent remote memory runtime to
be feasible, the low-latency data path operations need to be executed
by the hardware. In contrast, control path operations are complex
and require more flexibility, thus our approach is to implement
them in software. Control path operations include setting up trans-
lation information for disaggregated memory, enabling/disabling

Using Local Cache Coherence for Disaggregated Memory Systems

Compute Node

’ Application Memory Node 1

malloc, free, \==-F9 slab11 slab 1.2
mmap, etc. 1

[Resource Manager H
Caching Handler l

Cache-line Log Receiver |

——--

slab 1.1 Memory Node N

s slbN.I || slabN.2
slab N.1 }» F---

T Resource M: H
Application address space | Eviction Handler | TRDMA { Cacheline Los Recol T-
ache-line 0g kecever

7 write

"___i #—| Dirty Data Tracker
Resource M ¢)
| slab

expose/remove
Controller cnory pool

Resource M

Emulating dirty tracking

Figure 1: The Kona runtime system. Stripes indicate emu-
lated components. Thick black rectangles represent different
nodes in a rack. An application runs on a single compute node
and accesses disaggregated memory on the memory nodes.
Access to disaggregated memory is transparently realized by
the KLib library. A rack controller allocates disaggregated
memory at coarse granularity (large slabs).

tracking, choosing policies to be executed by the hardware, resource
management and error handling.

4 COHERENCE-BASED DISAGGREGATED
MEMORY

In this section, we describe the building blocks for coherence-based
disaggregated memory and we present the design and implementa-
tion of Kona, a runtime system that showcases these ideas.

We show Kona’s high-level software architecture in Figure 1. An
application runs on a single compute node and can access disag-
gregated memory offered by one or more memory nodes. Disag-
gregated memory allocation is handled by a rack controller, which
allocates memory at a coarse granularity, using large slabs. It does
so off the critical path of the application. Each memory node has
to register with the controller the amount of memory offered to
applications. In our design, we assume the controller is a centralized
entity managing the allocations [10], but a distributed approach is
also feasible [36]. Similar to prior work, we assume each compute
node has some amount of DRAM, which is used as a software cache
for disaggregated memory [71].

The main part of the Kona runtime is an application library,
KLib that hides all interactions with the controller, with the mem-
ory servers and with the new hardware primitives. KLib uses a
Resource Manager to interact with the controller and pre-allocate
disaggregated memory in large batches (slabs), which it maps in the
application’s address space. In addition, KLib uses AllocLib, an allo-
cation interposition library that handles fine-grained local memory
allocations on the compute node. AllocLib interposes on applica-
tions’ malloc and mmap calls and ensures that there is sufficient
disaggregated memory available for the allocation.

KLib consists of three components that implement the three
main disaggregated memory operations: fetch, track, evict (§2). The
Caching Handler fetches remote data that is not in the local DRAM

Operating Systems Review, SIGOPS, 2023

cache when the application accesses it; the Dirty Data Tracker mon-
itors data modified in the local DRAM cache; the Eviction Handler
monitors the cache utilization and evicts pages to make room for
new remote pages. These components rely on new hardware primi-
tives, which we describe next. An additional component, the Poller,
optimizes the RDMA communication with the controller and with
the memory nodes, by polling for RDMA completions.

4.1 New Hardware Primitives

Current remote memory systems use virtual memory for the Caching
Handler and for the Dirty Data Tracker. In essence, they use page

faults to detect applications’ reads and writes. This approach is

often used in practice, but it incurs large overheads. For efficient

disaggregated memory, we need two new hardware primitives that

provide the equivalent functions: (1) cache-remote-data: identify

what data to fetch from disaggregated memory and cache it in local

memory; (2) track-local-data: identify what data has been modified

locally and needs to be written back to disaggregated memory, at

fine granularity (i.e., cache-line).

The Eviction Handler copies dirty cache lines or pages to the
remote host. While this operation can be realized on current hard-
ware, it could also benefit from hardware acceleration. We propose
a third, optional, hardware primitive: (3) copy-dirty-data.

With Kona, applications still use virtual memory for translation
and protection, but Kona does not use virtual memory to provide
access to disaggregated memory. Next, we discuss a reference ar-
chitecture for how such hardware support can be implemented.

4.2 A Reference Architecture Using FPGAs

We propose a hardware architecture that consists of an FPGA at-
tached to the CPU using a coherent interconnect (Figure 2). Both
the CPU and the FPGA have their own attached memories (CMem
and FMem, respectively). In addition, the FPGA exports a large fake
physical address space, larger than FMem (called virtual FMem,
or VFMem), backed by the disaggregated memory instead of the
local DRAM. The FPGA implements a memory agent that main-
tains a directory for VFMem, similar to current directories in the
CPU. An application that accesses VFMem generates requests to
the VFMem directory, allowing the FPGA to observe all the cache
lines requested by the CPU from VFMem, and to fetch them from
the disaggregated memory (the cache-remote-data primitive neces-
sary for the Caching Handler). In addition, the FPGA can observe
the cache-line writebacks, and track them in a bitmap for cache-
line granularity dirty data tracking (the track-local-data primitive
necessary for the Dirty Data Tracker).

This approach has the limitation that the FPGA cannot track
CMem. To leverage this approach, we have to map all remote data
in VFMem, to enable the FPGA to track accesses. All other memory
for a process, such as thread stacks, global variables, executable
pages, etc., are allocated from CMem.

The FPGA uses FMem as a cache for VFMem. The CPU never
accesses FMem directly, but always accesses addresses in VFMem.
Using VFMem for remote data results in two overheads: (1) accesses
to the FPGA memory (FMem and VFMem) are slower than accesses
to CMem, and (2) there is an additional translation step that the
FPGA needs to perform from VFMem to FMem, even when the data

Operating Systems Review, SIGOPS, 2023

Application host

i) Remote memory

(" FPGA i :
s VFMemY)

Coherent | Coherence
n protocol Kona

interconnect Bitstream
NIC logic

| S —

\ FMem }

Figure 2: The Kona Architecture: An FPGA connected to a
CPU through a coherent interconnect. Both the CPU and
the FPGA have DRAM attached (CMem and FMem, respec-
tively). The FPGA exposes fake physical memory to the CPU
(VFMem), backed by remote memory.

is cached. FMem and VFMem are slower than CMem because of
the limited interconnect bandwidth and because the directory logic
is implemented in the FPGA. Eventually, this logic can be hard-
ened, making its performance more competitive to a server NUMA
system, where accessing a non-local socket is 1.5X slower than
accessing the local socket [26]. Nevertheless, these overheads are
much lower than current virtual memory and network overheads
present in disaggregated memory systems.

4.3 Disaggregated Memory Operations in Kona

We describe how Kona works when our proposed hardware primi-
tives are available. In §4.4, we describe how we simulate the FPGA
hardware that is not yet available.
Allocating remote memory. The KLib Resource Manager re-
quests remote memory from the rack controller (§4) and maps it in
VFMem, logically pre-populating the memory. Since VFMem is a
fake physical memory exposed by the FPGA, no physical memory
is actually allocated at this time, only the page tables are set up and
the pages are marked present.
Fetching remote data. In a state-of-the-art disaggregated memory
system, identifying remote data to fetch is achieved using page
faults (§2). Kona essentially replaces page faults with cache misses
by mapping the remote data in VFMem and marking all pages as
present. Thus, when an application accesses data in VEMem, it will
not incur any page faults because the pages are already marked
as present, but it will incur cache misses from all the CPU cache
hierarchies. The CPU sends a cache-line request to the VFMem
directory on the FPGA, which can fetch the cache-line from the
remote host on demand. Since pages remain mapped at the same
location and with the same permissions, this approach also avoids
TLB invalidations and shootdowns, which are otherwise incurred
during eviction in a virtual memory based remote memory system.
Kona does not expose FMem directly to applications or to the
OS, but uses it as a cache for VFMem. When the CPU accesses data
from VFMem, the FPGA first checks if the data is cached in FMem,
and if so, responds with the data. If the data is not cached, the
FPGA fetches the data from the remote host, and decides whether
to cache the data in FMem or not (based on how likely it is the
data will be accessed again in the near future, or that nearby data
- in the same page — will be accessed soon). FMem always caches
entire pages. Moreover, the hardware prefetcher can request other
cache lines likely to be accessed soon, which can cause the FPGA
to prefetch the pages from remote memory. This is not possible in
a disaggregated memory system based on virtual memory because

page faults are serializing and the hardware prefetcher does not
cross a page boundary [43].

Tracking dirty data. State-of-the-art remote memory uses write
page faults for identifying what data has been modified locally (§2).
Instead, with Kona, we can avoid the write page faults by tracking all
cache-line write-backs that go to VFMem. The FPGA can identify
which data has been modified without the page faults, and can do
so at cache-line granularity. When the FPGA decides to write out
dirty cache lines, it has to snoop them from CPU caches, in case the
CPU has a newer copy of the data. Snooping is necessary because
the FPGA only finds out about dirty data when the data is evicted
from CPU caches and reaches memory.

Evicting dirty data. Kona uses a software log based on a ring
buffer design similar to FaRM [29] to transfer dirty cache lines.
We copy and aggregate the dirty cache-lines into the log, and use
RDMA writes to transfer the log to the remote host. The Cache-line
Log Receiver running on a thread on the remote host distributes the
cache-lines from the received log into their locations and sends an
acknowledgment to the application host. The process is asynchro-
nous: the acknowledgment latency can be hidden by continuing to
process more dirty cache-lines during the waiting time.

Address translation. The local host’s page tables contain transla-
tions between the virtual addresses of a process to fake physical
addresses in VFMem, as pages always remain mapped as present in
VFMem. To discover the remote addresses of the missing pages, the
FPGA uses a hashmap (Remote translation). The FPGA needs to im-
plement additional metadata to keep track of which pages mapped
in VFMem are present in the FMem cache (Local translation).

1) Remote translation. Upon a memory allocation, Kona stores
metadata in a hashmap recording the remote memory addresses
corresponding to each allocated slab in local memory. Kona allo-
cates remote memory proactively in batches, so the allocation is
not on the critical path. The remote allocation uses large sizes of
one or multiple slabs. Kona uses a local memory allocator to split
a large slab for smaller allocations on the client side. Kona stores
the information in shared memory, with the FPGA being able to
access it. The FPGA never updates the map, but it consults it when
it fetches data from a remote host or when it writes dirty data back
to a remote host.

2) Local translation. We design FMem as a 4-way set associative
cache, with its block size equal to the page size. This approach is
a good tradeoff that reduces the size of the metadata required to
translate VFMem to FMem, while also ensuring that we keep the
latency of a CPU memory access to VFMem low and enable a low
eviction rate from the cache. Moreover, FMem always caches at
page granularity instead of cache-line granularity, because the CPU
hardware caches are sufficient to ensure that an application can
benefit from temporal locality. The purpose for the FMem cache is
to ensure that applications can also benefit from spatial locality.

4.4 Simulating Missing Hardware Support

Without access to a CXL-connected cache-coherent FPGA, we em-
ulated the necessary hardware primitives in our evaluation. The
Caching Handler emulates cache-remote-data by instrumenting
application reads and writes to remote memory. The Dirty Data

Using Local Cache Coherence for Disaggregated Memory Systems

‘ Tracked application ‘ ‘ KTracker ‘

maps pages Vaddr start l§ Vaddrend | New-maps-datastruct
“ PB_DP

KTracker
Justlib/ ' . '

pthread

Application address space

address space

Figure 3: The KTracker simulator and its data structures.

Tracker emulates track-local-data by creating snapshots of the ap-
plication’s pages cached in FMem. During eviction, the Dirty Data
Tracker compares the application data with the snapshot to deter-
mine which cache-lines have been modified within each page. Next,
we describe the two simulators we built, which allow us to measure
each of the operations independently.

(1) Fetching remote data. We developed KCacheSim to simulate
the fetch from disaggregated memory operation without page faults.
KCacheSim measures the average memory access time (AMAT) by
relying on an existing cache simulator, Cachegrind [39], to deter-
mine the cache miss rates for each application from each level of
the cache. For Kona, we model the DRAM cache (FMem) as another
level in the cache hierarchy, with a 4KB block size. For the base-
lines, we use main memory (CMem) instead of FMem. Our model
includes the cost of the software stack in the remote memory access
latency. Thus, we model a page fault as an increase in the transfer
latency from remote memory. This is a conservative approach that
favors the page fault based approach because it does not consider
the impact of additional overheads that page faults cause: flushing
the processor pipeline and hardware cache invalidations caused by
the kernel mode execution.

(2) Measuring dirty data amplification. We developed KTracker
to emulate Kona dirty data tracking at cache-line granularity by
comparing snapshots of the application’s memory in software
(Fig. 3). KTracker uses ptrace to attach to a running process and cre-
ate snapshots of its memory. Later, it diffs the application’s memory
with the copy to find out dirty cache lines. KTracker runs the appli-
cation for a fixed amount of time, which gives us an indication of the
application performance in real time, not simulated. KTracker up-
dates its memory snapshot every second (a configurable parameter)
and includes all accessed pages.

4.5 Implementation

We implemented Kona as a C library that interposes on an appli-
cation’s memory allocation and uses a cooperative user thread for
handling page faults [80]. The library has a total of 3.6k lines of code
(LoC). The Kona server and controller run as separate daemons,
and were implemented in 542 and 575 lines of C code, respectively.
We implemented KTracker in C in 2.4k LoC. Kona uses a simplified
version of KTracker to emulate cache-line dirty data tracking (200
LoC): for each page that is fetched from remote memory, we create
a copy of the page that is used by the eviction thread to determine
which cache-lines have changed when the page is evicted (Fig. 1).

Operating Systems Review, SIGOPS, 2023

5 EVALUATION

In this section, we evaluate Kona’s end-to-end performance using
hardware emulation and simulation. We compare Kona with a
virtual memory remote memory system using a microbenchmark
(§5.1) and we use our software tools to evaluate disaggregated
memory operations on real applications: fetching remote data (§5.2)
and dirty data amplification (§5.3).

Test-bed. We perform the RDMA experiments on a cluster of dual
processor Skylake servers running at 2.2GHz with Mellanox Con-
nect X5 cards connected through a 100Gbps RoCE switch. We run
the simulations on CloudLab [31].

5.1 End-to-end Performance

We compare Kona with a virtual memory-based implementation
(Kona-VM) using a benchmark that we instrument to emulate dis-
aggregated memory access. Kona-VM is a good baseline for our
techniques because Kona and Kona-VM use the same algorithms
for data caching and eviction. Kona-VM uses virtual memory, while
Kona emulates the proposed hardware primitives through bench-
mark instrumentation. The benchmark allocates 4GB of remote
memory per thread, and uses 1, 2, or 4 threads to read and write 1
cache-line in every page; each thread accesses distinct pages. As we
increase the number of threads, the total amount of work increases.
The benchmark reports the total execution time. Kona is faster than
Kona-VM by 6.6X at 1 thread and by 4-5X for 2 and 4 threads when
the benchmark runs with 50% local cache and eviction happens
concurrently with the application execution (Figure 4). Kona only
writes the dirty cache-lines to the remote host, while Kona-VM has
to write entire pages.

Next, we evaluated the benchmark with all the initial data in
disaggregated memory, but without eviction from the DRAM cache.
Here, Kona-NoEvict is faster than Kona-VM-NoEvict by 3-5X. Kona-
VM incurs two page faults for caching a remote page. The first is to
fetch the page from remote memory, and the second, minor page
fault removes the write-protection on the page, marks the page
dirty and enables the write. Kona avoids both page faults. Kona-
VM-NoWP avoids write-protection, so it only incurs one page fault.
This version cannot track dirty pages so it is incomplete, yet it is
still slower than Kona-NoEvict by 1.2-2.9X.

EN 1-Thread
I 2-Threads
Hl 4-Threads

. Ko“a—VN\\(O"‘a'NOF_Z,czs\ta-VM'NOEV\\(C&)‘na—VM'NOWP

Figure 4: Kona and Kona-VM.

5.2 Fetching Remote Data

In this section, we evaluate the remote data fetch operation using
KCacheSim to study the average memory access time (AMAT) for

Operating Systems Review, SIGOPS, 2023

25 A

—e— LegoOS
Kona 20+
—A— Kona-main

30+

204

AMAT (ns)
AMAT (ns)

10 A
5

e
15 -

10 —e— LegoOS
Kona
—A— Kona-main

—e— LegoOS
Kona
—A— Kona-main

30

ns)

AMAT (

T T T T 0 T
0 25 50 75 100 0 25
Cache Size (% Local memory)

(a) Redis Rand

Cache Size (% Local memory)

(b) Linear Regression

T T 0- T T T T
75 100 0 25 50 75 100
Cache Size (% Local memory)

(c) Graph Coloring

Figure 5: Simulating remote data fetch

applications accessing disaggregated memory. KCacheSim simu-
lates Kona’s Caching Handler and compares it to remote access
based on virtual memory. KCacheSim models remote access laten-
cies based on our measurements using real RDMA hardware and
different memory hierarchies for each system. For Kona, the mem-
ory hierarchy includes hardware caches, FMem (NUMA memory
with higher latency) and disaggregated memory. We also evaluate
Kona-main, a version of Kona where the data is cached in CMem,
thus avoiding the NUMA overheads present in Kona. This shows
the best performance that Kona can achieve if it could track CMem,
not only FMem (via processor architecture extensions). For LegoOS,
the memory hierarchy includes hardware caches, CMem (locally
attached DRAM) and disaggregated memory. We measured remote
access latencies running on real hardware (not in simulation), in-
cluding page fault overheads and we use these measurements for
the simulation (10 ps).

For large cache sizes, close to 100% of application peak resident
set sizes, all systems perform similarly because the number of re-
mote accesses is small. However, the AMAT increases quickly for
smaller caches, as the applications incur more (expensive) remote
memory accesses. As Fig. 5 shows, Kona makes disaggregated mem-
ory possible, as the AMAT increases much more slowly compared
to the software systems. When only 25% of the data is cached, which
is not unrealistic for disaggregated memory, Kona achieves 1.7X
lower AMAT than LegoOS. The one exception is Linear Regres-
sion (Fig. 5b), where the memory access latency is almost constant
irrespective of local cache size. This behavior is due to the work-
load’s streaming access pattern, where there is almost no data reuse
and hence little use for a local cache. Kona incurs overhead from
caching remote data in FMem, due to NUMA effects, as shown by
the comparison with Kona-main. We measured the worst overhead
for Linear Regression (25%), while Redis and Graph Coloring incur
only 2-13% higher AMAT due to NUMA effects.

5.3 Dirty data amplification

We use KTracker (§4.4) to simulate cache-line tracking and evaluate
dirty data amplification difference compared to 4KB page granu-
larity. KTracker simulates the Dirty Data Tracker component and
compares it to dirty data tracking using virtual memory based write-
protection with a real-time window of 1-second. KTracker tracks
dirty data only locally, without using the network. We show the
4KB-page amplification relative to cache-line tracking in Figure 6

for Redis-Seq (sequential access) and Redis-Rand (random access).
Redis-Seq finishes faster than Redis-Rand, so it requires fewer 1
second windows. The first 10 windows of the experiment are the
server startup and initialization, so they look similar for both work-
loads. Cache-line granularity reduces the amplification for both
Redis-Rand and Redis-Seq, by 2-10X and by 2X, respectively. As
expected, the random workload experiences higher amplification
and thus the benefit from cache-line granularity is higher.

w
o
N

—— Redis-Rand —— Redis-Seq

N
o]
L

N
o
"

-
(&
L

=
o
n

v
L

o
"

0 20 40 60 80 100 120 140
Window # (window = 1 second)

4KB-page vs. cache-line dirty data amplification

Figure 6: Reducing dirty data amplification.

6 RELATED WORK

Cache coherence ensures consistency between multiple cached
copies of a memory location [60, 64]. The memory controller main-
tains access permissions for all cache-lines belonging to its physical
memory and has visibility into CPU cache-line reads and writes.
Cache-coherent FPGAs (ccFPGAs) are connected to the CPU(s)
using a link that ensures memory coherence between a CPU-attached
memory and an FPGA-attached memory (e.g., CXL [74]). ccFP-
GAs [3, 28, 41, 51] can observe the CPU’s local memory coherence
events and use this information to enable new disaggregated mem-
ory systems. FPGAs have been used in datacenter [27, 65] for differ-
ent purposes, such as accelerating applications [12-14, 22, 35, 38, 47,
55,62, 73,75, 76], smart NICs [34, 58], and multi-tenancy [46, 54, 83].
Disaggregated memory systems. Distributed shared memory [16,
19, 48, 69, 70] provides shared memory and cache coherence across
hosts. In contrast, Kona leverages local cache coherence within a

Using Local Cache Coherence for Disaggregated Memory Systems

single host to expose remote memory to legacy applications trans-
parently. Works on disk swapping [1, 6, 44] rely on page faults
and page-based tracking, which limits their performance. Recent
page-based disaggregated memory systems also use virtual mem-
ory [10, 15, 36, 57, 71, 81]. Meanwhile, Kona avoids virtual mem-
ory overhead by using the local cache coherence traffic via the
cache-coherent FPGA to access remote data while also remaining
transparent to applications.

Sub-page granularity memory access tracking. Prior works
have explored sub-page granularity tracking by using (1) specific
APIs [29, 30, 61, 67], (2) source code annotations requiring appli-
cation modification [61], (3) run-time techniques to track reads
and writes [5, 23, 53], (4) architectural simulations [21, 68], and
(5) hardware support for sub-page protection [17, 40]. These ap-
proaches trade-off generality, tracking granularity, and application
performance based on the specific use-case.

7 CONCLUSION

Disaggregated memory brings numerous benefits, which cannot be
achieved by increasing the amount of memory on each host. Such
benefits include decreasing capital and operating expenditures by
improving memory utilization, allowing scaling compute and mem-
ory independently, as well as decreasing memory over-provisioning
on each host and reducing the number of premium CPUs required,
which come as a pre-requisite for large-memory hosts.

Despite the clear motivation for disaggregated memory, achiev-
ing high performance in disaggregated memory systems remains
challenging. This paper introduces a new class of systems for dis-
aggregated memory that uses the local host’s cache coherence
mechanisms to track applications’ memory accesses in order to
improve application performance, dirty data amplification and net-
work utilization. Our approach requires adding a cache coherent
FPGA to each host — a small cost, relative to the cost savings enabled
by making disaggregated memory practical.

REFERENCES

[1] Balance LRU lists based on relative thrashing. https://lwn.net/Articles/690069/.

[2] CCIX. https://www.ccixconsortium.com.

[3] Enzian, a research computer built by the Systems Group at ETH Ziirich. http:
//www.enzian.systems/index.html.

[4] memtier benchmark: A high-throughput benchmarking tool for redis and mem-
cached. https://redislabs.com/blog/memtier _benchmark-a-high-throughput-
benchmarking-tool-for-redis-memcached/.

[5] Pin - a dynamic binary instrumentation tool. https://software.intel.com/en-

us/articles/pin-a-dynamic-binary-instrumentation-tool.

] Reconsidering swapping. https://lwn.net/Articles/690079/.

] Redis: open-source, in-memory data structure store. https://redis.io.

] VOLTDB. https://www.voltdb.com/.

] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. Fast key-value stores:
An idea whose time has come and gone. In Workshop on Hot Topics in Operating
Systems (HotOS), 2019.

[10] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,

Stanko Novakovic, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh,

Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. Remote regions: a

simple abstraction for remote memory. In USENIX Annual Technical Conference

(ATC), 2018.

Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,

Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,

and Michael Wei. Remote memory in the age of fast networks. In ACM Symposium

on Cloud Computing (SoCC), 2017.

[12] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan.

Shouji: a fast and efficient pre-alignment filter for sequence alignment. Bioinfor-

matics, 35(21), 2019.
[13] Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu, and Can

Alkan. GateKeeper: a new hardware architecture for accelerating pre-alignment

[11

[14]

[15

(16

— =
&2

(19]

[20

[21

~
&,

[23

[24

[25

[26

~
=

[28

[29

[30

[31

[32

(33]

(34]

[35

[36

(37]

Operating Systems Review, SIGOPS, 2023

in DNA short read mapping. Bioinformatics, 33(21), 2017.

Mohammed Alser, Taha Shahroodi, Juan Gémez-Luna, Can Alkan, and Onur
Mutlu. SneakySnake: a fast and accurate universal genome pre-alignment filter
for CPUs, GPUs and FPGAs. Bioinformatics, 2020.

Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-
hout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
Can far memory improve job throughput? In European Conference on Computer
Systems (EuroSys), 2020.

Cristiana Amza, Alan L. Cox, Shandya Dwarkadas, Pete Keleher, Honghui Lu, Ra-
makrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks: Shared
memory computing on networks of workstations. IEEE Computer, February 1996.
Apple. How We Ported Linux to the M1. https://corellium.com/blog/linux-m1.
Luiz André Barroso and Urs Hélzle. The case for energy-proportional computing.
Computer, 40(12):33-37, December 2007.

J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared memory
based on type-specific memory coherence. In ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP), March 1990.

Abhishek Bhattacharjee. Translation-triggered prefetching. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The Gem5 Simulator. SIGARCH Comput. Archit. News,
39(2):1-7, August 2011.

M. Blott and K. Vissers. Dataflow architectures for 10 Gbps line-rate key-value-
stores. In IEEE Hot Chips 25 Symposium (HCS), 2013.

Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent dynamic
instrumentation. In International Conference on Virtual Execution Environments
(VEE), 2012.

Irina Calciu, Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf, Onur
Mutlu, and Aasheesh Kolli. Rethinking Software Runtimes for Disaggregated
Memory, February 2021. https://github.com/project- kona/asplos21-ae.

Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel Gandhi,
Onur Mutlu, and Pratap Subrahmanyam. Project PBerry: FPGA Acceleration for
Remote Memory. In Workshop on Hot Topics in Operating Systems (HotOS), 2019.
Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera.
Black-box concurrent data structures for NUMA architectures. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017.

Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods,
Sitaram Lanka, Derek Chiou, and Doug Burger. A Cloud-Scale Acceleration
Architecture. In International Symposium on Microarchitecture (MICRO), 2016.
Convey Computer. The Convey HC-2 Computer. Architectural
Overview. https://www.micron.com/~/media/documents/products/white-
paper/wp_convey_hc2_architectual_overview.pdf, 2012.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
FaRM: Fast remote memory. In Symposium on Networked Systems Design and
Implementation (NSDI), April 2014.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Ed Nightingale, Matthew Ren-
zelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises:
distributed transactions with consistency, availability, and performance. In ACM
Symposium on Operating Systems Principles (SOSP), October 2015.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In USENIX Annual Technical Conference (ATC), 2019.
Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements
for resource disaggregation. In Symposium on Operating Systems Design and
Implementation (OSDI), October 2016.

Gen-Z draft core specification—december 2016. http://genzconsortium.org/draft-
core-specification-december-2016.

G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown. NetFPGA: An
open platform for teaching how to build Gigabit-rate network switches and
routers. IEEE Transactions on Education, 2008.

Heiner Giefers, Raphael Polig, and Christoph Hagleitner. Accelerating Arithmetic
Kernels with Coherent Attached FPGA Coprocessors. In Design, Automation &
Test in Europe (DATE), 2015.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. Efficient Memory Disaggregation with Infiniswap. In Symposium on
Networked Systems Design and Implementation (NSDI), 2017.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. RDMA over Commodity Ethernet at Scale. In ACM

https://lwn.net/Articles/690069/
https://www.ccixconsortium.com
http://www.enzian.systems/index.html
http://www.enzian.systems/index.html
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://lwn.net/Articles/690079/
https://redis.io
https://www.voltdb.com/
https://corellium.com/blog/linux-m1
https://www.micron.com/~/media/documents/products/white-paper/wp_convey_hc2_architectual_overview.pdf
https://www.micron.com/~/media/documents/products/white-paper/wp_convey_hc2_architectual_overview.pdf
http://genzconsortium.org/draft-core-specification-december-2016
http://genzconsortium.org/draft-core-specification-december-2016

Operating Systems Review, SIGOPS, 2023

[38]

[39]
[40]

[41]

[42]

[43

[44]

[45

[46

[52

[53]

[54]

[55]

[56]

[57

[58]

[59]

[60]

[61]

Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), August 2016.

Zhenhao He, David Sidler, Zsolt Istvan, and Gustavo Alonso. A flexible k-means
operator for hybrid databases. In International Conference on Field Programmable
Logic and Applications (FPL), 2018.

Intel. Cachegrind. https://valgrind.org/docs/manual/cg-manual html.

Intel. EPT-based Sub-Page Permissions. https://software.intel.com/sites/default/
files/managed/c5/15/architecture-instruction- set-extensions- programming-
reference.pdf.

Intel. Intel Xeon+FPGA Platform for the Data Center.
reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf.

Intel. Page Modification Logging for Virtual Machine Monitor White Pa-
per. https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/page-modification-logging-vmm-white-paper.pdf.

Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual. November
2020.

Scott F. Kaplan, Lyle A. McGeoch, and Megan F. Cole. Adaptive caching for
demand prepaging. In International Symposium on Memory Management (ISMM),
2002.

Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Kon-
stantinos Sagonas. Turning centralized coherence and distributed critical-section
execution on their head: A new approach for scalable distributed shared memory.
In IEEE International Symposium on High Performance Distributed Computing
(HPDC), 2015.

Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J. Rossbach. Sharing, Protection, and Compatibility for Recon-
figurable Fabric with AmorphOS. In Symposium on Operating Systems Design
and Implementation (OSDI), Carlsbad, CA, 2018.

Maysam Lavasani, Hari Angepat, and Derek Chiou. An FPGA-based in-line
accelerator for Memcached. IEEE Computer Architecture Letters, 2014.

Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems (TOCS), November 1989.

libibverbs. http://www.rdmamojo.com/2012/05/18/libibverbs.

Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F. Wenisch. System-level implications
of disaggregated memory. In IEEE Symposium on High Performance Computer
Architecture (HPCA), February 2012.

Liu Ling, Neal Oliver, Chitlur Bhushan, Wang Qigang, Alvin Chen, Shen Wenbo,
Yu Zhihong, Arthur Sheiman, Ian McCallum, Joseph Grecco, Henry Mitchel, Liu
Dong, and Prabhat Gupta. High-performance, Energy-efficient Platforms Using
In-socket FPGA Accelerators. In International Symposium on Field Programmable
Gate Arrays (FPGA), 2009.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph Hellerstein. GraphLab: A New Framework for Parallel Machine
Learning. In Conference on Uncertainty in Artificial Intelligence (UAI), 2010.
Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation. In Interna-
tional Conference on Programming Language Design and Implementation (PLDI),
2005.

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mu-
lugeta Eneyew, Zhengwei Qi, and Baris Kasikci. A Hypervisor for Shared-Memory
FPGA Platforms. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2020.

Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdan-
bakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. TABLA: A unified template-
based framework for accelerating statistical machine learning. In IEEE Symposium
on High Performance Computer Architecture (HPCA), 2016.

Yandong Mao, Robert Morris, and Frans Kaashoek. Optimizing MapReduce for
multicore architectures. Technical Report MIT-CSAIL-TR-2010-020, May 2010.
Hasan Al Maruf and Mosharaf Chowdhury. Effectively Prefetching Remote
Memory with Leap. In USENIX Annual Technical Conference (ATC), 2020.
Mellanox. Mellanox Innova™ IPsec 4 Lx Ethernet Adapter Card User Man-
ual. http://www.mellanox.com/related-docs/prod_software/Mellanox_Innova_
IPsec_4_Lx_Ethernet_Adapter_Card_User_Manual_rev_1_3.pdf.

Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. A large scale
study of data center network reliability. In Proceedings of the Internet Measurement
Conference (IMC), 2018.

Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on
memory consistency and cache coherence, second edition. Synthesis Lectures on
Computer Architecture, 15(1):1-294, 2020.

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. Latency-tolerant software distributed shared memory.

http://

[62

(63

[64

[65

(66

[67

[68

[69

=
=

=
[y

3
&,

[77]

(78]

(83

In USENIX Annual Technical Conference (ATC), July 2015.
Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur: A
framework for hybrid CPU-FPGA databases. In International Symposium on

Field-Programmable Custom Computing Machines (FCCM), 2017.
Gagandeep Panwar, Da Zhang, Yihan Pang, Mai Dahshan, Nathan DeBardeleben,

Binoy Ravindran, and Xun Jian. Quantifying Memory Underutilization in HPC
Systems and Using It to Improve Performance via Architecture Support. In
International Symposium on Microarchitecture (MICRO), 2019.

Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. In International Symposium on
Computer Architecture (ISCA), 1984.

Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A Reconfigurable Fabric
for Accelerating Large-Scale Datacenter Services. In International Symposium on
Computer Architecture (ISCA), 2014.

Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A
Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In ACM Symposium on Cloud Computing (SoCC), 2012.

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. AIFM:
High-performance, application-integrated far memory. In Symposium on Operat-
ing Systems Design and Implementation (OSDI), November 2020.

Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems. In International Symposium on
Computer Architecture (ISCA), 2013.

Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta:
A low overhead, software-only approach for supporting fine-grain shared mem-
ory. In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), October 1996.

Toannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R.
Larus, and David A. Wood. Fine-grain access control for distributed shared
memory. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 1994.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A dissemi-
nated, distributed OS for hardware resource disaggregation. In Symposium on
Operating Systems Design and Implementation (OSDI), Carlsbad, CA, 2018.
Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared persistent
memory. In ACM Symposium on Cloud Computing (SoCC), 2017.

Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing CNN accelerator
efficiency through resource partitioning. In International Symposium on Computer
Architecture (ISCA), 2017.

Navin Shenoy. A Milestone in Moving Data. https://newsroom.intel.com/
editorials/milestone-moving-data.

David Sidler, Zsolt Istvan, Muhsen Owaida, Kaan Kara, and Gustavo Alonso.
doppioDB: A hardware accelerated database. In International Conference on
Management of Data (SIGMOD), 2017.

Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gomez-
Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal. NERO: A near high-
bandwidth memory stencil accelerator for weather prediction modeling. In
International Conference on Field Programmable Logic and Applications (FPL),
2020.

Mario Smarduch. Enhanced Live Migration For Intensive Memory
Loads. https://events.static linuxfound.org/sites/events/files/slides/CloudOpen-
Japan-2015.pdf.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin,
Steven Hand, Mor Harchol-Balter, and John Wilkes. Borg: The next generation.
In European Conference on Computer Systems (EuroSys), 2020.

Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA support for datacenter
applications. In ACM Symposium on Operating Systems Principles (SOSP), October
2017.

Userfaultfd. https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt.
Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,
Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Semeru:
A memory-disaggregated managed runtime. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 261-280, November 2020.

Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. The End of a
Myth: Distributed Transactions Can Scale. International Conference on Very Large
Data Bases (VLDB), 10(6), February 2017.

Yue Zha and Jing Li. Virtualizing FPGAs in the Cloud. In International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020.

https://valgrind.org/docs/manual/cg-manual.html
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf
http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
http://www.rdmamojo.com/2012/05/18/libibverbs
http://www.mellanox.com/related-docs/prod_software/Mellanox_Innova_IPsec_4_Lx_Ethernet_Adapter_Card_User_Manual_rev_1_3.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_Innova_IPsec_4_Lx_Ethernet_Adapter_Card_User_Manual_rev_1_3.pdf
https://newsroom.intel.com/editorials/milestone-moving-data
https://newsroom.intel.com/editorials/milestone-moving-data
https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen-Japan-2015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen-Japan-2015.pdf
https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt

	Abstract
	1 Introduction
	2 Disaggregated memory systems taxonomy and tradeoffs
	3 Design principles
	4 Coherence-based disaggregated memory
	4.1 New Hardware Primitives
	4.2 A Reference Architecture Using FPGAs
	4.3 Disaggregated Memory Operations in Kona
	4.4 Simulating Missing Hardware Support
	4.5 Implementation

	5 Evaluation
	5.1 End-to-end Performance
	5.2 Fetching Remote Data
	5.3 Dirty data amplification

	6 Related Work
	7 Conclusion
	References

