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LPWANs address communication needs of IoT

● LPWANs provide communications to cheap, widely distributed end-devices
● Requirements on communications:

– Cheap, easy, large-scale deployment
– Long battery life

– Long communication range, O(km)

– Usually low data rate (periodic sensor readings, binary states, …)
– No complex medium access protocol, avoid channel sensing

● LoRa, SigFox, NB-IOT, Weightless, ...
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Problem: The mere existence of a transmission can leak 
sensitive information

This is a fundamental difference to other wireless technologies, such as cellular or WiFi.
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Event-driven communication leaks information

● Event-driven communication
– Devices send upon sensing a real-world event: Push button, IR sensor, humidity sensor, ...

● Eavesdropping is easy, inexpensive and can be done from a distance
– Robust encoding helps the eavesdropper.
– LoRa PHY has been reverse engineered. SDRs can be used.

● Existing work in LoRa/LPWAN security:
– Replay attack

– Acknowledgement spoofing
– Physical key extraction
– Device fingerprinting
– Reactive jamming

● Privacy implications not studied so far.
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Contributions

● We show that event-driven communication in LPWANs 
inherently leaks information.

● We identify two classes of leakage.
● We show that full leakage prevention is very difficult as it 

involves high amounts of excess power.



  6

LPWAN applications

Industrial applications Smart homes and cities
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LPWAN architecture
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Eavesdropping attacker

● Attacker’s intent: Obtain sensitive 
information which is associated with real-
world events that trigger transmissions

– Equipment failure, emergency situations, 
presence/absence of personnel, ...

– Irrespective of application-level encryption

● Attacker’s approach: Inspect per-
application message timings

– Can separate applications by frame header, 
device fingerprinting or based on location
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Example: Company parking space
How can real-world events show?
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Two types of information leakage

● Leakage: Eavesdropper learns about the occurrence of a real-
world event by observing message timings and aggregates 
thereof.

● Existential Leakage
– Transmission of a single message leaks occurrence of an event

● Statistical Leakage
– Statistics of message counts over time leaks information
– Attacker is interested in observing anomalies. These are likely to 

represent real-world events.
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Can leakage be prevented?

● Assumptions
– Delay-intolerant messaging

– In particular: No aggregation

– Power budget for obfuscation max. identical

● Approach: Dummy messages
● Can we prevent leakage of event information with dummies? At 

what cost?
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● Messages cannot be removed
● Messages can only be added
● Leakage prevention: Add dummies with identical temporal distribution as real 

packets.
● Each dummy message also represents a fake event (     ).
● For an anonymity set of size k, increase power by factor of k

Preventing existential leakage
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Preventing statistical leakage
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Can we protect from statistical leakage while keeping power consumption within 
reasonable bounds?
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Simulation model: traffic model
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Simulation model: time discretization
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Simulation model: attacker observable

t

count
t

anomaly indicator

anomaly 
intensity

Poisson-rate of 
anomalous traffic

Poisson-rate of 
background traffic

We choose the anomaly indicator as 
index of dispersion of the count within 
T

obs
: 

T
obs



  19

Attacker performs binary classification
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Obfuscation strategy
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Obfuscation cost depends on strategy
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Obfuscation strategy
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● Obfuscator’s goal: Optimize obfuscation 
subject to an average power constraint

● Results in a strategy:
● Probability of waterfilling an anomaly
● and Probability of introducing a fake 

anomaly

anomaly indicator
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Results

● We consider the performance of a guessing attacker
– Observes the anomaly indicator per interval

– Knows the rate of anomalies

– Knows the obfuscation strategy

– Attacker’s goal: correctly assign anomalies to intervals.

● Obfuscation cost limited to the power of real transmissions.
● Average error

– Which fraction of anomalies was correctly assigned by the guessing attacker?

● Conditional entropy
– Entropy in the system after the attacker seeing the observable.
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Attacker’s guessing performance
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Assumption: Obfuscator has optimal knowledge about the occurrence of anomalies.
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Attacker’s guessing performance

Assumption: Obfuscator has limited knowledge about anomaly occurrences (TNR 0.99, TPR 0.7).
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Conclusion

● Event-driven communication in LPWANs inherently leaks 
information.

● The mere existence of messages can leak sensitive 
information, as do statistical patterns in general.

● Implementation of privacy-enhancing techniques in the LPWAN 
context hard, as their effect is limited without incurring 
significant additional energy cost.
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