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Abstract

Our lives today rely on the secure operation of computers in a diverse set
of sectors, from energy to medicine. However, today’s computers execute
software bloated with complexity. Their large codebases provide a rich
and versatile system, but most functionalities are often not needed in their
target applications. This increases the trusted computing base (TCB) – the
software and hardware that needs to be trusted for the system to work
correctly. A large TCB is undesirable, as it gives attackers a higher likelihood
to find and exploit vulnerabilities. Most of this complexity comes from the
system software, that is, the operating system (OS) and the hypervisor.
Despite this, the system software’s codebase cannot generally be removed
from the TCB, as it executes with the highest privileges.

Thanks to additional hardware primitives, Trusted Execution
Environments (TEEs) break this paradigm, allowing even system software
to be removed from the TCB. Most CPU manufacturers and architectures
support some form of TEE: they can be found on Intel and AMD CPUs, as
well as on ARM and RISC-V architectures. Their advent is promising, as
they aim to let applications operate securely both when the (more
privileged) system software is malicious and when a physical attacker can
tamper with the system. Arguably, however, the guarantees that can be
provided against such a strong and privileged attacker are not fully
understood and often lead to TEE designs that make compromises
invalidating the protections that they aim to provide. For example,
previous work shows that the OS can abuse the CPU memory management
interface to get notified when the TEE accesses attacker-specified memory
regions, breaking data confidentiality. Understanding the capabilities of
privileged attackers thus leads to more accurate designs and a more secure
computing environment for everyone.

In this thesis, we contribute to the efforts of understanding the
capabilities of privileged attackers in the context of TEEs in four main
directions. First, we develop the Frontal attack, which shows that
leveraging the OS to issue interrupts frequently leads to the CPU exposing
detailed instruction execution timings, which can be used as a side
channel. This side channel is detailed enough to leak encryption keys from
a TEE and thus break data confidentiality. Second, we show that current
commercial TEEs struggle to provide code confidentiality against a
privileged attacker. Notably, we observe that using interpreters or JIT
compilers inside TEEs – a popular choice due to their convenience and
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flexibility – leaks significantly more confidential instructions compared to a
baseline where native instructions are used instead.

The third and fourth contributions relate to attestation protocols,
which are used to verify that a TEE is protecting a given application. We
emphasize the impact of previously neglected aspects in attestation
protocols in both these contributions. In the third contribution, we
highlight that relay attacks, while once thought to be tolerable given the
TEE protections, enhance the capabilities of a privileged attacker. Finally,
in the fourth contribution, we show that current attestation protocols
implicitly assume trust in the TEE manufacturer at runtime – despite the
manufacturers often claiming otherwise. While this implicit trust in the
TEE manufacturer is often overlooked, our analysis shows that it is a
concrete threat in practice and should thus be accounted for in future
attestation protocols.



Sommario

Oggigiorno, diversi aspetti della nostra vita dipendono dal corretto
funzionamento dei computer in una vasta gamma di settori, dall’energia
alla medicina. Tuttavia, attualmente i computer spesso eseguono software
sovradimensionato e altamente complesso. La vastità di questo software
fornisce un sistema versatile e ricco di funzionalità, anche se la maggior
parte di queste spesso rimangono inutilizzate nelle applicazioni finali. Ciò
aumenta la Trusted Computing Base (TCB, letteralmente base fidata per la
computazione), ovvero il software e l’hardware di cui ci si deve fidare
affinchè il sistema funzioni correttamente. Un’ampia TCB non è
auspicabile, in quanto aumenta le probabilità che gli hacker trovino e
sfruttino vulnerabilità per compromettere il sistema. La maggior parte di
questa complessità deriva dal software di sistema, ovvero il sistema
operativo e l’hypervisor. Nonostante ciò, la codebase del software di
sistema non può essere generalmente rimossa dal TCB, poiché viene
eseguita con i privilegi più elevati.

Grazie a delle primitive hardware aggiuntive, i Trusted Execution
Environments (TEE, letteralmente ambienti di esecuzione affidabili)
permettono di abbandonare questo paradigma, in quanto consentono di
rimuovere dal TCB anche il software di sistema. La maggior parte dei
produttori di CPU e delle architetture hardware supporta una forma di
TEE: sono presenti sia sulle CPU di Intel e AMD, che sulle architetture ARM
e RISC-V. Il loro avvento è promettente, in quanto mirano a proteggere
applicazioni sia da un software di sistema (più privilegiato) malevolo, che
da manomissioni fisiche sul sistema. Purtroppo, però, le garanzie che
possono essere fornite contro un tipo di attacco così forte e privilegiato
non sono ancora del tutto comprese e spesso portano a progettare TEE con
compromessi che invalidano le protezioni che essi intendono fornire. Ad
esempio, degli studi precedenti hanno dimostrato che il sistema operativo
può abusare dell’interfaccia di gestione della memoria della CPU per
essere notificato quando un TEE accede a regioni di memoria specificate
dall’hacker, violando la riservatezza dei dati. La comprensione delle
capacità di tipi di attacchi privilegiati porta quindi a progettare sistemi più
accurati e a un ambiente informatico più sicuro per tutti.

In questa tesi, contribuiamo agli sforzi di comprensione delle capacità
di tipi di attacchi privilegiati nel contesto dei TEE in quattro direzioni
principali. In primo luogo, sviluppiamo l’attacco Frontal, che dimostra che
sfruttando il sistema operativo per emettere interrupt frequentemente
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porta la CPU ad esporre dettagliate tempistiche di esecuzione delle
istruzioni, che possono essere utilizzate come canale laterale. Questo
canale laterale è sufficientemente dettagliato da far trapelare le chiavi di
crittografia da un TEE, così violando la sua riservatezza dei dati. In
secondo luogo, dimostriamo che gli attuali TEE commerciali faticano a
garantire la riservatezza del codice contro un attacco privilegiato. In
particolare, osserviamo che l’uso di interpreti o compilatori JIT all’interno
dei TEE – una scelta popolare per la loro convenienza e flessibilità – fa
trapelare un numero significativamente maggiore di istruzioni
confidenziali rispetto al caso in cui vengono invece utilizzate istruzioni
native.

Il terzo e il quarto contributo riguardano i protocolli di attestazione,
utilizzati per verificare che un TEE stia proteggendo una determinata
applicazione. In entrambi questi contributi sottolineiamo l’impatto di
aspetti precedentemente trascurati nei protocolli di attestazione. Nel terzo
contributo, osserviamo che gli attacchi di tipo relay, un tempo ritenuti
tollerabili visto le protezioni dei TEE, aumentano le capacità e pericolosità
di un attacco privilegiato. Infine, nel quarto contributo, dimostriamo che
gli attuali protocolli di attestazione presuppongono implicitamente la
fiducia nel produttore dei TEE anche in fase di esecuzione, nonostante i
produttori spesso affermino il contrario. Sebbene questa fiducia implicita
nel produttore sia spesso trascurata, la nostra analisi mostra che si tratta di
una minaccia concreta e che quindi dovrebbe essere tenuta in
considerazione nei futuri protocolli di attestazione.



Résumé

Aujourd’hui, notre vie dépend du fonctionnement sécurisé des ordinateurs
dans des secteurs très divers, de l’énergie à la médecine. Cependant, les
ordinateurs d’aujourd’hui exécutent des logiciels gonflés de complexité.
Leurs vastes bases de code fournissent un système riche et polyvalent, mais
la plupart des fonctionnalités ne sont souvent pas nécessaires dans leurs
applications cibles. Cela augmente la base informatique fiable (TCB) – les
logiciels et le matériel qui doivent être fiables pour que le système
fonctionne correctement. Une base de confiance importante n’est pas
souhaitable, car elle ne fait que donner aux attaquants une plus grande
probabilité de trouver et d’exploiter les vulnérabilités. La majeure partie de
cette complexité provient du logiciel système, c’est-à-dire du système
d’exploitation (OS) et de l’hyperviseur. Malgré cela, la base de code du
logiciel système ne peut généralement pas être retirée de la TCB, car elle
s’exécute avec les privilèges les plus élevés.

Grâce à des primitives matérielles supplémentaires, les environnements
d’exécution de confiance (TEE) brisent ce paradigme, permettant même
au logiciel système d’être retiré de la TCB. La plupart des fabricants et
des architectures de processeurs supportent une certaine forme de TEE :
on les trouve sur les CPU Intel et AMD et sur les architectures ARM et
RISC-V. Leur avènement est prometteur, car ils visent à permettre aux
applications de fonctionner en toute sécurité aussi bien lorsque le logiciel
système (plus privilégié) est malveillant que lorsqu’un attaquant physique
peut altérer le système. Cependant, les garanties qui peuvent être fournies
contre un attaquant aussi puissant et privilégié ne sont pas entièrement
comprises et conduisent souvent à des conceptions de TEE qui font des
compromis invalidant les protections qu’elles visent à fournir. Par exemple,
des travaux antérieurs montrent que le système d’exploitation peut abuser
de l’interface de gestion de la mémoire du CPU pour être notifié lorsque
le TEE accède à des régions de la mémoire spécifiées par l’attaquant, ce
qui brise la confidentialité des données. Comprendre les capacités des
attaquants privilégiés conduit donc à des conceptions plus précises et à un
environnement informatique plus sûr pour tous.

Dans cette thèse, nous contribuons aux efforts de compréhension des
capacités des attaquants privilégiés dans le contexte des TEEs dans quatre
directions principales. Tout d’abord, nous développons l’attaque Frontal,
qui montre que l’utilisation du système d’exploitation pour émettre des
interruptions fréquentes conduit le CPU à exposer des temps d’exécution
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d’instructions détaillés, qui peuvent être utilisés comme un canal latéral. Ce
canal latéral est suffisamment détaillé pour faire fuir les clés de chiffrement
d’un TEE et ainsi briser la confidentialité des données. Deuxièmement,
nous montrons que les TEE commerciaux actuels ont du mal à assurer la
confidentialité du code contre un attaquant privilégié. En particulier, nous
observons que l’utilisation d’interprètes ou de compilateurs JIT dans les
TEE – un choix populaire en raison de leur commodité et de leur flexibilité –
entraîne la fuite de beaucoup plus d’instructions confidentielles par rapport
à une base de référence où les instructions natives sont utilisées à la place.

Les troisième et quatrième contributions concernent les protocoles
d’attestation, qui sont utilisés pour vérifier qu’un TEE protège une
application donnée. Dans ces deux contributions, nous soulignons l’impact
d’aspects précédemment négligés dans les protocoles d’attestation. Dans la
troisième contribution, nous mettons en évidence le fait que les attaques
de relais, qui étaient auparavant considérées comme tolérables compte
tenu des protections du TEE, renforcent les capacités d’un attaquant
privilégié. Enfin, dans la quatrième contribution, nous montrons que les
protocoles d’attestation actuels supposent implicitement la confiance dans
le fabricant du TEE au moment de l’exécution – bien que les fabricants
prétendent souvent le contraire. Bien que cette confiance implicite dans le
fabricant soit souvent négligée, notre analyse montre qu’elle constitue une
menace concrète dans la pratique et devrait donc être prise en compte
dans les futurs protocoles d’attestation.



Zusammenfassung

Unser heutiges Leben hängt vom sicheren Betrieb von Computern in den
verschiedensten Bereichen ab, von der Energie bis zur Medizin mithilfe
hochkomplexer Software. Ihre grossen Codebasen bieten ein reichhaltiges
und vielseitiges System, aber die meisten Funktionen werden in ihren
Zielanwendungen oft nicht benötigt. Dadurch erhöht sich die
vertrauenswürdige Computerbasis (Trusted Computing Base – TCB) – die
Software und Hardware, der vertraut werden muss, damit das System
korrekt funktioniert. Eine grosse TCB ist unerwünscht, da sie nur eine
höhere Angriffsfläche für Schwachstellen bietet. Der grösste Teil dieser
Komplexität stammt von der Systemsoftware: dem Betriebssystem (OS)
und dem Hypervisor. Trotzdem kann die Codebasis der Systemsoftware im
Allgemeinen nicht aus der TCB entfernt werden, da sie mit den höchsten
Privilegien ausgeführt wird.

Trusted Execution Environments (TEEs) versprechen dieses Paradigma
zu ändern und ermöglichen es, Systemsoftware aus der TCB zu entfernen.
Die meisten CPU-Hersteller und -Architekturen unterstützen irgendeine
Form von TEE: Sie sind auf Intel- und AMD-CPUs sowie auf ARM- und
RISC-V-Architekturen zu finden. Ihr Aufkommen ist vielversprechend, da
sie darauf abzielen, Anwendungen sicher zu betreiben, sowohl wenn die
(privilegiertere) Systemsoftware bösartig ist als auch wenn ein physischer
Angreifer das System manipulieren kann. Die Garantien, die gegen einen
so starken und privilegierten Angreifer gegeben werden können, sind
jedoch nicht vollständig bekannt. Deshalb führen Designentscheidungen in
TEE-Designs oft zu Kompromissen, die den angestrebten Schutz
zunichtemachen. So haben frühere Arbeiten gezeigt, dass das
Betriebssystem die Speicherverwaltungsschnittstelle der CPU
missbrauchen kann, um benachrichtigt zu werden, wenn das TEE auf vom
Angreifer spezifizierte Speicherbereiche zugreift, wodurch die
Vertraulichkeit der Daten verletzt wird. In der Zukunft wird das
Verständnis der Fähigkeiten privilegierter Angreifer somit zu genaueren
Entwürfen und einer sichereren Computerumgebung für alle führen.

In dieser Arbeit leisten wir einen Beitrag zu den Bemühungen, die
Fähigkeiten privilegierter Angreifer im Kontext von TEEs zu verstehen, und
zwar in vier Hauptrichtungen. Erstens entwickeln wir den Frontal-Angriff,
der zeigt, dass die Ausnutzung des Betriebssystems zur Ausgabe von
Interrupts häufig dazu führt, dass die CPU detaillierte Zeitangaben zur
Befehlsausführung preisgibt, die als Seitenkanal genutzt werden können.
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Dieser Seitenkanal ist detailliert genug, um Verschlüsselungsschlüssel von
einem TEE auszuspähen und so die Vertraulichkeit der Daten zu brechen.
Zweitens zeigen wir, dass aktuelle kommerzielle TEEs kaum in der Lage
sind, die Vertraulichkeit des Codes gegenüber einem privilegierten
Angreifer zu gewährleisten. Insbesondere stellen wir fest, dass bei der
Verwendung von Interpretern oder JIT-Compilern innerhalb von TEEs –
eine beliebte Wahl aufgrund ihrer Bequemlichkeit und Flexibilität –
deutlich mehr vertrauliche Anweisungen durchsickern lassen als bei der
Verwendung nativer Anweisungen.

Der dritte und vierte Beitrag bezieht sich auf Bescheinigungsprotokolle,
mit denen überprüft werden kann, ob ein TEE eine bestimmte Anwendung
schützt. In diesen beiden Beiträgen betonen wir die Auswirkungen von
bisher vernachlässigten Aspekten in Attestierungsprotokollen. Im dritten
Beitrag heben wir hervor, dass Weiterleitungs-Angriffe, die früher
angesichts des TEE-Schutzes als tolerierbar galten, die Möglichkeiten eines
privilegierten Angreifers erweitern. Im vierten Beitrag schliesslich zeigen
wir, dass die derzeitigen Bescheinigungsprotokolle implizit davon
ausgehen, dass dem TEE-Hersteller zur Laufzeit vertraut wird – obwohl die
Hersteller oft etwas anderes behaupten. Während dieses implizite
Vertrauen in den Hersteller oft übersehen wird, zeigt unsere Analyse, dass
es in der Praxis eine konkrete Bedrohung darstellt und daher in
zukünftigen Attestierungsprotokollen berücksichtigt werden sollte.
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Chapter 1

Introduction

The words of this thesis are far more likely to be read from the screen of
a computing device than as ink etched on paper. The rapid evolution of
computers in the past 70 years has led to their proliferation in every aspect
of our lives. From the first bulky machines designed to aid the census and
perform heavy computational workloads, computers have now become
ubiquitous in our homes, offices, cars, airplanes, and play a crucial role in
sectors ranging from banking to medicine.

Each of these different deployment scenarios has its own unique set of
applications and security requirements. In a healthcare setting, for instance,
a computer may be utilized to access patient health records and manage
prescriptions. This computer may be running multiple applications such
as a web browser, a patient record management application, and a PDF
viewer. It is crucial that these applications are properly isolated to ensure the
confidentiality and integrity of their data and code. Without this isolation,
if a web browser is compromised, an attacker could access sensitive patient
health records and tamper with prescriptions, with potential consequences
to patients’ lives. Similar considerations apply in virtually all the sectors
where computers are employed.

Despite the potential harm, in today’s computing environment, it is
common for multiple applications to execute on the same computer or server.
One reason for this is economic viability. Running multiple applications on
the same hardware allows for better utilization of resources and reduces
costs. This is particularly important in cloud computing, where servers are
shared among multiple tenants. However, just as the different applications
in the hospital example discussed above, these tenants should not have to
trust each other for the correct functioning of their deployments.

Allowing mistrusting software to share the same hardware has been a
concern since the early days of computing. Already in the 1960s, barely
ten years since the advent of mainframes, researchers recognized the need
for hardware and software cooperation to enable concurrent programs to
execute securely. The seminal paper from Dennis and Van Horn [1] called
for a supervisor software to manage processes with the aid of hardware
primitives. These concepts stood the test of time, becoming the pillars that
support isolation in today’s computers. Today, two hardware mechanisms
are particularly relevant in aiding isolation: virtual addressing and
hierarchical privilege levels. The operating system (OS) and the hypervisor,
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acting as the supervisor software, use paging to direct the central
processing unit (CPU) virtual address (VA) translation. This gives each
application and virtual machine (VM) the illusion of exclusive control of
system memory. Hierarchical privilege level separation limits certain
instructions and memory accesses to only be executed by the supervisor
software, ensuring that low-privileged applications cannot modify VA
mappings or access peripherals without cooperation from the OS.

The guarantees provided by these isolation mechanisms are well
understood today. To hold, they rely on several assumptions, with the
principal ones being the following two: i) the supervisor software is not
compromised, and ii) no physical attacker, that is, the user and platform
administrators are trusted. These assumptions are not exhaustive, as they,
for instance, do not account for side channels [2], but they help in
discussing the attacker model. If just one of these assumptions is broken,
then the whole system is compromised. The first assumption is deeply
linked to the hierarchical privilege layers and to the concept of the trusted
computing base (TCB) – the software and hardware components that need
to be trusted for the security of the overall system to be guaranteed. Due
to it being more privileged, supervisor software is part of the TCB of every
VM and application running in the system. Given its part in the TCB of
every application, it is therefore crucial for supervisor software to not have
any vulnerability.

The supervisor software does not just isolate applications from each
other: it executes a scheduler, drivers, the filesystem, and manages network
connections, to name a few. All these capabilities come at the cost of code
size and complexity, which widens the attack surface. In short, having a
large monolithic OS control the entire system makes it difficult to guarantee
or verify a compromise-free environment. Thus, the damage inflicted by
malware cannot be fully contained in this attacker model. Even if malware
is installed as an unprivileged application, once it escalates its privileges to
the privileges of supervisor software, it can control the entire system.

The second assumption, the absence of a physical attacker, is also
problematic to justify in modern systems. Particularly, in a cloud
computing setting, the cloud provider might not be fully trusted. An
untrustworthy cloud provider has several avenues to compromise the
execution of one of its tenants. Two exemplary ones are cold boot
attacks [3] and employing a malicious hypervisor. Cold boot attacks allow
to extract the content of DRAM. Even if the OS protects software accesses
to peripherals, a physical attacker can completely bypass these restrictions.
Having control of the hypervisor has similar consequences to
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compromising the OS: the hypervisor is part of the TCB of every VM, so it
can read or tamper with the tenants’ VMs memory. The difference with the
first assumption is that the malicious cloud provider does not need to find
a vulnerability in the hypervisor – they can just install a malicious one to
target a specific user. In summary, not only do both assumptions weakly
hold in modern systems, but they are also impossible to verify by the user.

Trusted Execution Environments. The increasing difficulty in meeting
these assumptions led in the 2000s to the first proposals aiming to remove
the supervisor software from the TCB of applications and VMs [4, 5, 6, 7,
8]. These proposals and the many that followed with the same goals [9]
are commonly known today as trusted execution environments (TEEs).
While TEEs are still an area of active research, recently, they started being
rolled out in major architectures. Some examples are Intel SGX [10], AMD
SEV-SNP [11], ARM TrustZone [8], ARM CCA [12], and even on RISC-V
with Keystone [13].

TEEs allow isolating enclaves1 from a malicious environment by
leveraging hardware primitives. Intel SGX and AMD SEV are the two most
prevalent commercial TEE approaches on general-purpose devices. They
aim to protect both against compromised supervisor software and against
a physical attacker. Protection against a physical attacker is achieved
thanks to the CPU encrypting and authenticating the enclave memory
when stored in DRAM. Thus, even with a cold boot attack, at best, only
encrypted memory can be recovered from DRAM.

Doing away with the supervisor software in the TCB requires two
hardware-supported primitives: tracking and isolating the enclave context
and attestation. Intel SGX and AMD SEV track context switches in and out
of the enclave and ensure that only code running inside the enclave can
access its memory and resources. The difference between the two
approaches in this regard is that SGX enclaves include only low-privileged
applications, while SEV enclaves isolate a full VM. Finally, attestation ties
all of these protections together. The software itself cannot ascertain
whether it is executing within an enclave or as a regular application
because the OS could emulate the enclave environment. Attestation solves
this impasse in TEEs by allowing to prove to a remote verifier, e.g., a client
of a cloud service, that a remote code has been deployed inside an enclave.
Attestation is based on cryptographic methods, wherein the CPU computes

1Different implementations refer to the environment protected by the TEE in different
ways. For instance, ARM CCA refers to them as realms. Throughout the thesis, we always
refer to the environment protected by a TEE as enclave, irrespective of how the particular
implementation refers to it.
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and signs the identity of the enclave with a secret key. Since the supervisor
software cannot access the CPU secret keys, the remote verifier can
securely deploy secrets to enclaves upon successful attestation, as it proves
that the TEE protections are in place.

Protecting against a strong attacker, despite the hardware protections, is
more challenging than initially thought. Enclaves still need to communicate
with the system software through system or supervisor calls. The results
of these calls can, however, be modified by the attacker through what
is known as an Iago attack [14]. Control over the supervisor software
allows noise reduction for traditional side-channel attacks [15, 16]. The
capability to inspect and modify page tables allows controlled-channel
attacks [17, 18, 19], a side channel entirely controlled by the attacker.
Particularly, with controlled-channel attacks, the attacker can modify page
tables so that the CPU notifies the attacker when the enclave accesses certain
parts of its memory [17]. The attacks can also be made more stealthy by
simply monitoring the accessed and dirty bits of the page tables [18, 19].
Having physical access and supervisor capabilities, the attacker can also
undervolt the CPU [20, 21], glitching the execution in enclave mode and
thus tampering with its integrity.

At their core, hierarchical isolation primitives and TEEs rely on the same
principle: isolating memory between execution contexts. However, isolation
against privileged attackers must account for all of the resources and the
control they can exert over the system, as the described attacks highlight.
While we understand how to effectively isolate against an unprivileged
attacker, our understanding of the capabilities of a privileged attacker is
not yet sufficient to fully meet the guarantees that TEEs promise.

1.1 Thesis Contributions
Increasing the understanding of the capabilities of a privileged attacker
guides the design of the software and hardware of TEE stacks. In this thesis,
we contribute to the understanding of the capabilities of the attacker in
four main directions. The first two focus on the impact that the ability to
control interrupts has on instruction timing and confidential code leakage,
while the last two highlight the need for attestation protocols to provide
additional properties. In the following, we discuss these contributions in
more detail.

Timing Leakage Under Frequent Interrupts. We investigate the impact
that issuing frequent interrupts has on instructions’ timings. Our evaluation
and experiments show that, when frequently issuing interrupts, instruction
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execution times correlate with their virtual address. Particularly, we show
that the feature of the virtual address that explains the timing variability is
its alignment with respect to the CPU fetch window – the range of memory
that gets fetched by the CPU to be decoded as instructions depending on
the current program counter. We show that this correlation emerges when
frequently issuing interrupts but not during normal execution – when the
pipeline is not frequently flushed. Thus this attack can only be leveraged
by a privileged attacker, e.g., in the context of a TEE. We also observe that
since the correlation occurs based on the address, even the execution of
the same instruction can produce different timings.

We leverage these observations to introduce the Frontal attack against
Intel SGX enclaves. The Frontal attack leaks fine-grained control flow in
branches containing the same instructions, even when they span less than
a cacheline in size – which has been proven challenging in previous work.
We demonstrate that it can achieve an accuracy of 99% in our synthetic
binaries, but the resolution on real binaries is usually less. Nonetheless,
we use it to exploit two cryptographic libraries: the Intel IPP Cryptography
library and the mbedTLS library. For the mbedTLS proof-of-concept, we
perform an end-to-end attack, using the Frontal attack to leak a full RSA
key.

Evaluation of Code Leakage in TEEs. TEEs aim to provide not only data
confidentiality but also code confidentiality. Several commercial [22, 23,
24, 25] and academic [26, 27, 28, 29, 30, 31, 32, 33] solutions exist
aiming at leveraging code confidentiality in TEEs. We study whether code
confidentiality can be truly provided on current TEEs, given the
capabilities of privileged attackers. We generalize the existing proposals
and show that they generally follow two approaches: native execution and
intermediate representation (IR) execution. In native execution, the
enclave executes the confidential instructions natively, while in IR
execution, an interpreter or just-in-time compiler inside the enclave
executes the confidential instructions. We develop a methodology to
quantify instruction leakage under different privileged attacker strengths.
The methodology leverages the fact that certain types of instructions leave
different traces in the system, which can then be combined to construct a
list of candidate instructions. We apply our methodology to both Intel and
AMD CPUs. Our results highlight that IR execution inherently presents an
amplification leakage compared to native execution because to execute
one IR execution, multiple native instructions are required – the leakage of
which can be combined.
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While in native execution, less than 10 % of the ISA instructions can be
leaked, the observed leakage amplification in IR execution is significant. To
showcase the danger with IR execution, we experimentally demonstrate a
practical end-to-end instruction extraction attack against WAMR, a WASM
runtime running on Intel SGX. Our attack was able to fully classify known
programs and subroutines running inside the enclave and was able to extract
with 100% confidence around 50% of an enclave executing a previously
unseen program.

Relay-Safe Attestation. While relay attacks have been known for over
a decade, their implications have not been thoroughly analyzed. TEEs’
attestation protocols do not usually aim at preventing relay attacks. The
rationale behind this choice is that attestation proves to the verifier that it
is interacting with a genuine CPU. Since the CPU is genuine, it should not
matter in which computer it is exactly. We show, however, that giving the
attacker the capability to relay attestation to another platform enhances
its capabilities. We observe that relay attacks increase the capability of
the attacker to leverage side-channel attacks. For instance, they allow an
adversary with only remote access to a platform (say after a compromise)
to relay the attestation to a local platform over which it can also perform
physical attacks (such as voltage manipulation). Relay attacks also allow a
form of “downgrade attack” in which the attacker can relay to a platform
that will never receive security updates and thus be exploitable in the
future.

To mitigate these attestation relay attacks, we propose ProximiTEE,
which enhances attestation with proof of proximity to a particular CPU.
ProximiTEE relies on a physical device that can be connected to the specific
target platform that the user wants to attest to. ProximiTEE requires no
changes from the manufactures hardware and attestation designs at the cost
of the extra device, which has to be connected to the server. We evaluate
ProximiTEE and show with a prototype that relay prevention is practical in
practice.

Security Analysis of Manufacturer’s Runtime Trust. Trust in the hardware
manufacturer is implicitly assumed when working with TEEs. Usually, the
argument is that since the manufacturer produces the hardware that is
being adopted, if they were to be malicious, they would simply compromise
the hardware. This often leads to tolerating them as active parties in TEEs
attestation protocols. We observe that manufacturers might not be malicious
at manufacturing time or that their manufacturing facilities might not be
compromised, yet their attestation facilities could be compromised, or they
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could be compelled (e.g., with a lawful order) to compromise them. We thus
argue that there is an advantage in separating the trust in manufacturers
between manufacturing-time trust and runtime or post-deployment trust.

Intel and AMD claim that they cannot compromise attestation
post-deployment. However, through our security analysis of their protocols
and public patents, we show that if they were to be compromised at
runtime, their current attestation mechanisms could be abused by an
attacker (particularly a privileged one). With this analysis, we highlight
the need to design attestation protocols that do not require runtime trust
in the manufacturer.

1.2 Thesis Organization

This thesis is organized into three main parts, Parts I to III. Part I opens
up the thesis with the Introduction (this chapter) and the background in
Chapter 2. Chapter 2 discusses the background relevant to the rest of the
thesis, particularly focusing on Intel SGX and AMD SEV primitives. The
rest of the thesis consists of Part II, related to information leakage in TEEs,
and Part III, on analyzing attestation protocols shortcomings. In Part II, we
discuss data leakage with the Frontal attack in Chapter 3 and introduce
our methodology and analysis of code leakage in Chapter 4. The results
of both Chapters 3 and 4 rely on the attacker’s capability to fine-tune the
delivery times of interrupts. We thus conclude Part II with Chapter 5 by
discussing AEX-Notify, a new architectural extension with which Intel aims
to curb these attacks.

In Part III, we discuss the dangers of relay attacks in Chapter 6, where
we also discuss an enhancement to existing attestation protocols to
prevent these attacks. Chapters 7 and 8 then conclude Part III by
discussing the nuances and importance of separating the trust in the
manufacturer between manufacturing time trust and deploy-time trust.
The analysis in these chapters focuses mainly on how Intel (in Chapter 7)
and AMD (Chapter 8) need to be trusted at runtime in their current
attestation protocols.

Finally, we discuss the closing remarks of this thesis and future work in
Chapter 9.
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1.3 Publications and Author Contributions
This thesis is based, in part, on the following publications:

[P1] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Čapkun.
“Frontal Attack: Leaking Control-Flow in SGX via the CPU
Frontend”. 30th USENIX Security Symposium (USENIX Security
’21).

[P2] Ivan Puddu, Moritz Schneider, Daniele Lain, Stefano Boschetto,
and Srdjan Čapkun. “On (the Lack of) Code Confidentiality in
Trusted Execution Environments”. arXiv preprint 2212.07899
(2022) - Under submission.

[P3] Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Capkun.
“ProximiTEE: Hardened SGX Attestation by Proximity Verification”.
Proceedings of the Tenth ACM Conference on Data and Application
Security and Privacy (CODASPY ’20). Best Paper Award.

These publications are the result of the collaboration and contributions of
all the involved authors. In the following, when necessary, we refer to the
authors of these publications with their initials. As Chapters 3, 4 and 6 are
respectively based on [P1, P2, P3], they also contain contributions from the
coauthors of the respective papers, including on the writing and figures.
The same applies to Chapter 7, which is based on an unpublished report,
coauthored with SC, and first written to coordinate a responsible disclosure.
Next, we summarize the contributions made by this thesis’ author, IP, to
these four chapters.

Author Contributions. For Chapter 3, derived from [P1], IP implemented
the code of the experiments, the proof-of-concept, and the defenses. In
cooperation with the other coauthors, IP designed, executed, and analyzed
the data of the experiments to reverse engineer the CPU behavior. IP
performed the binary and source code analysis of the Intel IPP and
mbedTLS library and executed and evaluated the attacks on the found
vulnerabilities. IP evaluated the effectiveness of the defenses. IP
coordinated the project across collaborators. All the authors contributed to
the final version of the published manuscript.

For Chapter 4, derived from [P2], IP implemented the code of the
framework to compute the candidate sets and collected the data. In
cooperation with the other coauthors, IP analyzed and interpreted the
instruction leakage data for native and IR execution. IP executed the
experiments to collect the profiling data for the WASM segmentation

https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
http://dx.doi.org/10.48550/ARXIV.2212.07899
http://dx.doi.org/10.48550/ARXIV.2212.07899
http://dx.doi.org/10.48550/ARXIV.2212.07899
http://dx.doi.org/10.48550/ARXIV.2212.07899
http://dx.doi.org/10.1145/3374664.3375726
http://dx.doi.org/10.1145/3374664.3375726
http://dx.doi.org/10.1145/3374664.3375726
http://dx.doi.org/10.1145/3374664.3375726
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attacks. IP designed, implemented, and evaluated the end-to-end WASM
attack. IP coordinated the project across collaborators. All the authors
contributed to the final version of the published manuscript.

For Chapter 6, derived from [P3], IP, in cooperation with the other
authors, conceptualized the risks posed by relay attacks, designed the
protocols, and performed the security analysis. IP and AD implemented
the protocols and collected the experimental data. In cooperation with the
other authors, IP analyzed the data. All the authors contributed to the final
version of the published manuscript.

For Chapter 7, derived from an unpublished report authored by IP and
SC, IP had the original idea and conceptualized the attack. IP and SC defined
the concrete threats posed by the attacks. All the authors contributed to
writing the report.

1.3.1 Other Publications
During his doctoral studies, the author of this thesis also coauthored the
following publications, which are closely related to the work of this thesis:

[R1] Ivan Puddu, Daniele Lain, Moritz Schneider, Elizaveta Tretiakova,
Sinisa Matetic, and Srdjan Capkun. “TEEvil: Identity Lease via
Trusted Execution Environments”. arXiv preprint 1903.00449
(2019).

[R2] Jawad Haj-Yahya, Jeremie S. Kim, A. Giray Yağlıkçı, Ivan Puddu,
Lois Orosa, Juan Gómez Luna, Mohammed Alser, and Onur Mutlu.
“IChannels: Exploiting Current Management Mechanisms to Create
Covert Channels in Modern Processors”. 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA
’21).

[R3] Moritz Schneider, Aritra Dhar, Ivan Puddu, Kari Kostiainen, and
Srdjan Čapkun. “Composite Enclaves: Towards Disaggregated
Trusted Execution”. IACR Transactions on Cryptographic Hardware
and Embedded Systems (2021).

[R4] Friederike Groschupp, Mark Kuhne, Moritz Schneider, Ivan Puddu,
Shweta Shinde, and Srdjan Capkun. “It’s TEEtime: Bringing User
Sovereignty to Smartphones”. arXiv preprint 2211.05206 (2022) -
Under submission.

In addition, the author of this thesis worked on projects that led to the
following publications:

http://dx.doi.org/10.48550/ARXIV.1903.00449
http://dx.doi.org/10.48550/ARXIV.1903.00449
http://dx.doi.org/10.48550/ARXIV.1903.00449
http://dx.doi.org/10.48550/ARXIV.1903.00449
http://dx.doi.org/10.1109/ISCA52012.2021.00081
http://dx.doi.org/10.1109/ISCA52012.2021.00081
http://dx.doi.org/10.1109/ISCA52012.2021.00081
http://dx.doi.org/10.1109/ISCA52012.2021.00081
http://dx.doi.org/10.1109/ISCA52012.2021.00081
http://dx.doi.org/10.1109/ISCA52012.2021.00081
http://dx.doi.org/10.46586/tches.v2022.i1.630-656
http://dx.doi.org/10.46586/tches.v2022.i1.630-656
http://dx.doi.org/10.46586/tches.v2022.i1.630-656
http://dx.doi.org/10.46586/tches.v2022.i1.630-656
http://dx.doi.org/10.48550/ARXIV.2211.05206
http://dx.doi.org/10.48550/ARXIV.2211.05206
http://dx.doi.org/10.48550/ARXIV.2211.05206
http://dx.doi.org/10.48550/ARXIV.2211.05206
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[O1] Patrick Leu, Ivan Puddu, Aanjhan Ranganathan, and Srdjan Capkun.
“I Send, Therefore I Leak: Information Leakage in Low-Power Wide
Area Networks”. Proceedings of the 11th ACM Conference on Security
& Privacy in Wireless and Mobile Networks (WiSec ’18).

[O2] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk,
Jayneel Gandhi, Onur Mutlu, and Pratap Subrahmanyam. “Project
PBerry: FPGA Acceleration for Remote Memory”. HotOS ’19.

[O3] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan
Al Maruf, Onur Mutlu, and Aasheesh Kolli. “Rethinking Software
Runtimes for Disaggregated Memory”. Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21).

[O4] Lois Orosa, Yaohua Wang, Mohammad Sadrosadati,
Jeremie S. Kim, Minesh Patel, Ivan Puddu, Haocong Luo,
Kaveh Razavi, Juan Gómez-Luna, Hasan Hassan,
Nika Mansouri-Ghiasi, Saugata Ghose, and Onur Mutlu. “CODIC:
A Low-Cost Substrate for Enabling Custom In-DRAM
Functionalities and Optimizations”. 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA ’21).

http://dx.doi.org/10.1145/3212480.3212508
http://dx.doi.org/10.1145/3212480.3212508
http://dx.doi.org/10.1145/3212480.3212508
http://dx.doi.org/10.1145/3212480.3212508
http://dx.doi.org/10.1145/3317550.3321424
http://dx.doi.org/10.1145/3317550.3321424
http://dx.doi.org/10.1145/3317550.3321424
http://dx.doi.org/10.1145/3445814.3446713
http://dx.doi.org/10.1145/3445814.3446713
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Chapter 2

Background

This chapter introduces the relevant background needed to understand
the rest of the thesis. We first describe basic computer architecture topics,
particularly showing how context switches work in a hierarchical privilege-
level system. We then explain what changes trusted execution environments
(TEEs) make to these basic systems. We generally focus on Intel SGX,
AMD SEV-SNP, and ARM CCA, as at their core, these try to achieve similar
objectives and are the most widely deployed TEEs to date. We then describe
in more detail how SGX enclaves are initialized and how the operating
system manages enclave context switches. Finally, we discuss how these
mechanisms translate to AMD SEV enclaves.

2.1 Computer Architecture Fundamentals
We now give a basic overview of a modern computer architecture.
Computer architecture concerns the design of a computing system at
different levels of abstraction: From how it is subdivided into individual
hardware components, to the internal implementation of each of these
components, and how they interface with each other and to software.
Throughout this section, we touch on different design aspects of a modern
computer architecture, focusing on how they give rise to security concerns
and what mechanisms have been introduced to address these concerns.

2.1.1 Hardware and Software
One of the crucial design aspects of a modern computing system is whether
a given functionality should be implemented in hardware or software. This
choice has profound implications in terms of performance, flexibility, cost,
and security.

In terms of performance, generally, implementing a functionality on a
dedicated hardware component or module makes it execute more efficiently
and faster than if it was implemented by software. The downsides come in
flexibility. As these components are tailor made for their target functionality,
they could be under-utilized if their functionality is not often needed. On
the other hand, general-purpose hardware, which is fully customizable by
software, has the benefit of supporting virtually any application, with a
trade-off in efficiency and performance compared to dedicated hardware.
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Figure 2.1: Example of a typical hardware configuration on a modern
computing architecture. The edges between the components show the
communication topology. Blue (dark) edges represent typical internal
communication links, while the yellow (light) ones show how external
entities are connected.

The most ubiquitous architecture nowadays, a CPU-centric architecture,
strikes a balance at a system’s level between these two extremes. We give
a simplified view of this architecture in Figure 2.1. The figure depicts the
various components found in the architecture and how they communicate
with each other and the external world. At the core of the architecture,
we can find the central processing unit (CPU), the only general-purpose
hardware component in the system. The remaining hardware components
are usually tasked with data acquisition, storage, and communication, to
name a few. With this configuration, software that specializes the system
for a particular application is mostly meant to execute on the CPU. This
leaves other components with the job of aiding the CPU in executing specific
sub-tasks. For example, the network interface card (NIC) and the graphics
processing unit (GPU), depicted in the figure, help the CPU in networking
and graphics processing tasks, respectively. While the CPU could perform
both of these tasks, the NIC and the GPU do it far more efficiently than
the CPU could, all the while relieving the CPU from performing them, thus
freeing its computational resources for other tasks. Note how these two tasks
are needed by a wide range of applications, thus justifying the presence of
dedicated hardware for them despite their narrow functionalities. A second
type of peripherals, shown in the picture, provides custom hardware for
various types of memory extension. The CPU itself has some memory, such
as read-only memory (ROM), which is non-volatile, and registers and
caches, which are volatile1. What is important to take away from this is that

1Volatile memory is memory that is not guaranteed to be preserved upon a system reboot.
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the CPU has a limited amount of memory, generally not enough to handle
the requirements of today’s applications. This is why we find on the system
separate hardware components providing additional pools of memory. That
said, we will not delve into the advantages and disadvantages of having
these non-integrated in the CPU, as it is out of scope for the thesis.

This brief description of the architecture is sufficient to give an intuition
as to how these different components work together to form a computing
system capable of handling a wide spectrum of applications, from weather
forecasting to playing cute cat videos. Intuitively, each component could
benefit from directly communicating with all the others. For instance, if a
network packet just contains a frame that needs to be rendered on screen,
the NIC could instruct the GPU to process it. However, direct communication
between each component would go against the design principle we saw
before, wherein each hardware component (besides the CPU) is specialized
to perform only its given task. In the example of the video frame, the NIC
would need to know how to interface itself with the particular GPU installed
in the system. The problem with this approach is that the interface of these
components is vastly different, not only across different manufacturers
but also between models and versions. Recall that their advantage is to
have functionality implemented in hardware, and having to support every
other possible device in hardware immensely raises the complexity and
cost of the hardware design. As a consequence, manufacturers release a
particular type of software, known as driver, to facilitate this communication.
Drivers expose an application programming interface (API) to the rest of
the system, which allows other software to interact with the device. As
drivers are software, they execute on the only component in the system
designed to handle it: the CPU. Because all drivers run in the CPU, the CPU
can communicate with all devices. Therefore, for the example mentioned
above, the frame received by the NIC is first sent to the CPU, which can
talk to the NIC thanks to the specific NIC’s driver executing on the CPU. An
application’s software that received the network packet, and also executing
on the CPU, then sends the frame to the GPU, thanks to the GPU drivers
installed on the system.

To summarize, due to the fact that drivers execute on the CPU, the
CPU is able to communicate with every component on the system, and
thus takes in the role of setting up every component, and orchestrating
the communication between them. This is shown by the blue (dark) edges
in Figure 2.1, which show which communication links form between the
components on the platform. The figure highlights how a star topology
emerges wherein the CPU is involved in the communication between all
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Figure 2.2: Software organization on the system

the other components. The only exception to this communication topology
occurs with direct memory access (DMA). With DMA, the CPU can configure
a portion of system memory (DRAM) to be available to any other peripheral
in the system that supports it. The peripheral assigned to a particular range
can then read and write to it without involvement from the CPU. This and
the rest of the memory management has security implications, as we will
see in the next sections.

2.1.2 The Trusted Computing Base
We depict the software executing on the various components of the system
in Figure 2.2. Not surprisingly, as discussed before, most of the software
executes in the CPU. This is indicated in the figure by the various
applications, the Operating System (OS), Virtual Machines (VMs), and
hypervisor executing on the CPU. Nonetheless, some software also
executes on the other hardware components present in the system. For the
most part, this software is known as firmware, and it takes care of
managing several internal implementation-specific hardware resources
and provides an interface to the drivers running on the CPU.

This type of software distribution across the system is typical in a
CPU-centric architecture. The fact that the system can support multiple
applications, even running simultaneously, is a testament to the versatility
of this configuration. However, utilizing the same hardware for multiple
applications comes with security risks. To explain them and how they are
addressed, we briefly comment on how the system can be abused if no
protection is in place. Imagine a scenario in which a banking application is
executing on the system alongside another utility application, say a music



2.1 Computer Architecture Fundamentals 17

player. Both applications execute on the CPU, and thus have access to
system memory and all of the peripherals. Imagine that the video player
can modify the memory of the banking app by, say, sending requests to
DRAM. No integrity can be guaranteed in this case, and a user of this system
needs to ensure that no application is malicious in order to properly utilize
any of them. This becomes quickly infeasible the more applications are
installed on the system. Besides this, drivers and firmware executing on
the system also have access to system memory and are thus capable of
compromising any other app on the system if they are malicious.

Informally, the set of software and hardware that needs to be trusted
for a particular task to execute as intended is known as the trusted
computing base (TCB). Without any protection, the whole system is part of
the TCB, meaning that no software or hardware should be malicious for
the system to operate correctly. With a system-wide TCB, as soon as a
malicious application is installed in the system, then that application could
steal every other application’s data or even modify and delete the code and
data of every other application installed. With a TCB this large, the
question is not how to protect a system but how long it will take until it
gets compromised. This ultimately would erode users’ trust in the whole
system, drastically reducing the set of applications for which a computer
could even be considered a viable option.

Modern platforms tackle this problem by trying to minimize the TCB
needed to execute an application. We refer to the smallest set of hardware
components and software needed to execute an application as its security
context. Independent applications can be engineered to have separate
security contexts, as they do not need to rely on each other to execute.
Ideally, these independent security contexts executing on the system would
then have a separate TCB. Modern platforms try to isolate different
security contexts on the system through several mechanisms, which we
introduce in the next sections. Isolation between security contexts
commonly refers to memory isolation between them. Informally, if two
contexts are isolated, they are not able to read or write each other’s
memory. The idea behind this is that the security measures between the
two contexts should achieve the same level of isolation as the ideal world
in which each security context is executing on its own separate platform.
Next, we see how this isolation is enforced in practice.
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2.2 Basic Isolation Enforcement
Observe that if a hardware component only has a security context, then no
isolation mechanisms are needed in that component. Take the software
running on the NIC, shown in the top left corner of Figure 2.2. Since the
NIC only needs to execute its own firmware, there is no need to separate
the TCB within it. However, for a transaction to be sent correctly, a
banking app should not have to trust any of the productivity software or
video games installed in the system to be benign. As discussed, due to the
way the platform is organized, these mutually distrusting software
components execute on the CPU, and thus naturally, most of the TCB
separation mechanisms are implemented and enforced on the CPU. Note,
however, that other peripherals, such as the GPU [34], also implement
similar principles when they need to separate their security contexts.

Isolation between different security contexts can be achieved with
mechanisms that range from pure software to pure hardware. Pure
software mechanisms work by injecting instructions into untrusted
instruction streams. These injected instructions enforce restrictions for
untrusted processes so that, e.g., they can only access specific memory
regions. With hardware mechanisms, instead of injecting/modifying
instructions, the hardware itself enforces the restrictions.

Software Fault Isolation (SFI) [35], interpreters, and just-in-time (JIT)
compilers are examples of pure software mechanisms that can be used to
achieve isolation. These mechanisms are also often referred to as sandboxing.
Practically, however, isolation enforcement is often realized by a cooperation
between hardware and software, and thus we focus on these mechanisms.

Several hardware mechanisms have been devised over the years to
create TCBs compartmentalizing different modules of the software and
hardware stack. The primitives themselves define how tight the TCB can
be made around a given security context. In line with the principle of least
privilege, the tighter the TCB is around the security context, the better
it is in terms of security, as this minimizes the attack surface as much
as possible. In the following, we introduce different primitives used to
isolate the various security context running on the system. Particularly
how software is compartmentalized into privilege levels and how virtual
memory management aids in achieving a finer separation within each level.
These two primitives work together to create separate TCBs on the system,
and understanding them and their limitations is key to understanding what
more modern solutions are aiming to achieve.
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Figure 2.3: Privilege levels and expected software to be running on each
level (according to [37, 39]) on x86 (left) and ARM (right). Note that
numbers decrease (increase) with more privileges in x86 (ARM).

2.2.1 Privilege Levels
The first principle that we discuss is that of hierarchical execution contexts.
With this principle, permissions and capabilities are based on the current
execution context, which we define next. The execution context generally
defines the current state of the CPU. Register values, internal signals, and
the current memory state are some of the elements that determine the
CPU’s execution context. The CPU can provide different capabilities to the
executing instructions, depending on the current execution context. The
allowed capabilities are often organized in hierarchical levels 2, with more
privileged levels inheriting and extending all the capabilities from the lower-
privileged levels. This principle is implemented in practically all modern
CPU architectures, although they refer to it in different ways and with minor
differences between them, as shown for two architectures in Figure 2.3. For
instance, on x86 platforms, they are called privilege levels [37, 38], while
on ARM platforms, they are called exception levels [39]. In the following,
we use the term privilege level as the generic permission state that the CPU
can track. Note that this is not the same as the security context defined
above, which is the smallest TCB possible for an application.

Both x86 and ARM platforms implement four privilege levels [37, 38,
39]. Figure 2.2 depicts how software is allocated to different levels in a
typical deployment scenario. For the same component, software running
on more privileged levels is depicted underneath software running on less
privileged levels. Logically separate software modules running at the same

2While common, this is not the only possible model. See CHERI [36] for a notable exception.
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privilege level are depicted alongside each other. Examples of this can
be seen in Figure 2.2 for both the CPU and the GPU. System software,
which includes the Operating System (OS) and the hypervisor, executes on
the CPU on higher privileged levels than the user applications. It is used
to manage peripherals, the filesystem, and perform several other critical
system tasks. Isolating it from the rest of the applications thus effectively
removes them from the system software’s TCB. This separation makes it
possible for system software to manage the application’s execution and
further enforce isolation between them. Having system software at a more
privileged level compared to the rest of the applications has the advantage
of simplifying the CPU hardware implementation, as some of the logic
necessary to achieve isolation between applications running on the least
privileged level can be delegated to system software rather than being the
responsibility of the hardware.

The main challenge in supporting privilege levels is that, from the point
of view of the CPU, software is nothing but a sequence of instructions,
one executing after another. This has two implications with respect to
how permissions are enforced to isolate the various contexts executing
on the CPU. First, TCB separation can only be enforced at the instruction
level. This means that given that the CPU can recognize that an instruction
from a privilege level is executing, TCB isolation is obtained by blocking
some instructions from executing if they try to violate that privilege level’s
permissions. Second, while at higher levels of abstraction instructions can
be logically grouped into mutually distrusting security contexts, at the
hardware level it is intractable to distinguish between these contexts simply
by analyzing some property of the instruction stream. Next, we discuss how
each of these two problems, enforcing isolation based on privilege level and
tracking the execution context, are solved in modern CPU architectures.

Isolating Privilege Levels. In line with their hierarchical organization, more
privileged levels can usually access (read/write) their own memory and
that of lower-privileged levels. Enforcing these access privileges is achieved
through a cooperation between hardware and software. Initially, the system
boots into the highest privileged mode. The software in this mode (usually
system software) instructs the CPU about the mapping between memory
regions and privilege levels. This is done either through a mechanism called
memory paging, which we will discuss in Section 2.2.2, or by specifying the
expected privilege level for each memory range on dedicated CPU registers.
The mapping between memory regions and privilege level can be changed
at runtime, but software cannot re-assign or modify memory assigned
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to higher privileged levels. A common mechanism to access peripherals
is to memory map them, meaning that system software is able to access
peripherals by referencing determinate memory regions. Memory isolation
across privilege levels hence also makes it possible to isolate peripheral
access depending on the privilege level. By making these memory regions
accessible only to high-privileged software, lower-privileged applications
are prevented from directly accessing peripherals. Low-privileged software
contexts can still access peripherals, but to do so, they need to cooperate
with system software, allowing it to implement fine-grained access control
on them.

Recall that the CPU can only enforce the permissions at the instruction
granularity. Thus, when executing an instruction that accesses memory, the
CPU checks that the current privilege level is privileged enough to perform
that memory access. The check is done by comparing the permission level
of the to-be-accessed address, assigned with the mechanisms described
above, with the privilege level of the current execution context. If they
match, or the current execution context is more privileged, the instruction
executes successfully. Otherwise, the instruction execution is aborted, and
an exception-handling routine is executed to handle the faulty access.

Privilege Level Transitions. Hardware and software cooperate to provide
a safe transition between privilege levels. A safe transition guarantees that
less privileged execution contexts cannot tamper with the integrity of code
in more privileged execution contexts. This entails, for example, that code
is not unintentionally executed with elevated execution privileges and
that control flow is not hijacked across privilege boundaries. Even slight
deviations from the intended control flow are particularly dangerous in
this case, as they could lead to performing actions that privileged software
would not have otherwise performed.

The CPU exposes an interface to software to configure entry points
into different privilege levels. Transitions across privilege levels can then
only happen from those entry points. The entry points sanitize the inputs
and perform several consistency checks. Recall that privilege separation
mechanisms are meant to remove unprivileged software from the system
software’s TCB. Thus all calls from unprivileged software to privileged
software are assumed to be untrusted. As a consequence, ensuring that
every privilege level transition goes through a predefined entry point is
vital for the correctness and security of high-privileged software. The entry
points, however, are only needed when elevating privileges, while when
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going from more privileged levels to less privileged ones, software is allowed
to resume the execution from any point of the program.

At least two types of transitions from low-privileged software to high-
privileged software are supported on different architectures: synchronous
and asynchronous. Synchronous transitions are also known as system calls
and occur when low-privileged software needs system software to perform
some actions for it. Asynchronous transitions occur whenever an exception
or interrupt occurs that is configured to be handled by system software.
Both in the case of synchronous and asynchronous transitions, the CPU
determines the appropriate entry point and then executes it, all while
changing the privilege level. Note that in any case, an attempt to execute
code from a higher privileged context without using the specified entry
point is blocked by the CPU (by forwarding execution to an exception
handler to handle the fault).

Both x86 and ARM allow to specify multiple entry points for system
calls and interrupt/exception handling. On x86, the system call entry points
can be specified both in the global descriptor table (GDT) and the local
descriptor table (LDT) [37], while entry points for interrupts and exceptions
are assigned as vector numbers, and their entry points are defined in the
interrupt descriptor table (IDT) [37]. The GDT, LDT, and IDT are simply a
range of memory that the CPU interprets in a special way. The OS configures
the CPU cores instructing them on where it stores these tables in memory
by saving their base pointer address in specific CPU registers: the GDTR, the
LDTR, and the IDTR, respectively. Only the most privileged level is allowed
to change the value of these registers. When an interrupt or exception
occurs, the vector number of the interrupt or exception determines the
offset through which the IDT is accessed. That offset then contains the
address of the routine that will handle the interrupt. To return from an
interrupt-handling routine to the previous execution context, software then
executes the iret instruction. System calls instead happen by explicitly
redirecting control flow to one of the entries of the GDT or LDT. Instructions
that can have as target one of these entries are: call, jmp, sysenter, or
syscall. To terminate a system call, a return to a lower privilege level can
be executed with one of the following instructions: ret, sysexit, sysret.

On ARM architectures, context switches follow a similar procedure, but
the process and the structures involved are slightly simpler. On
AArch64 [39], entry points are stored as exception vectors. Each exception
level has a register named VBAR_ELx (where x ∈ [0,3]), which stores the
base pointer for the vectors of exception level x . To handle exceptions and
interrupts, the CPU sets the program counter to an offset from VBAR_ELx.
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The offset is calculated as a multiple of the vector number of the
exception/interrupt to be handled. As opposed to x86, in ARM, system
calls are handled in the same way as exceptions. The instructions used for
system calls (HVC, SMC, and SVC) cause an exception with a predefined
number reserved for system calls. While handling this system call
"exception", the CPU changes the exception level and redirects execution
to the instructions present at the offset of VBAR_ELx related to the system
call vector number. Returns to less privileged exception levels are
performed using the ERET instruction.

2.2.2 Virtual and Physical Addresses
Peripherals and memory ranges in the system are addressed through
physical addresses. For instance, a range of the physical address space is
generally reserved for accessing DRAM. When the CPU executes an
instruction referencing a physical address in the DRAM range, it fulfills the
instruction by issuing a memory request to DRAM. For a memory read,
DRAM receives the physical address as part of the request and then returns
the memory value that was last written at that physical address. Note that
memory transactions usually happen at the granularity of a cache line
(commonly 64B).

In terms of security, dividing the privileges only in hierarchical levels,
as described before, would make it impossible to isolate multiple security
contexts running at the same level. For instance, as shown in Figures 2.2
and 2.3, user-level applications are meant to execute with the least level
of privilege. However, if they are not isolated from each other, they would
be able to access and modify each other’s memory. This is undesirable,
both in terms of usability and in terms of security. Usability-wise, without
separation, the various applications running on the system would need to
coordinate to agree on memory ranges that they can each use Security-wise,
this makes it possible for every application to access each other’s memory,
making it trivial for any malicious application in the system to leak or
tamper with the data of any other application executing on the system.

Using virtual addresses solves these usability and, more importantly,
security issues. Virtual addresses create a level of indirection between
memory accesses and the actual accessed address. Whenever a virtual
address is accessed, the CPU first translates it to a physical address and
then performs the memory access to that physical address. The translation
is done through a mechanism called paging, which is managed by the OS.
Note how, like the privilege separation mechanism described above, this
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Figure 2.4: 4-level virtual address translation lookups performed on an x86
CPU to translate a virtual address into a physical one. The tables contain
only physical addresses, and the virtual address is used as an index to these
tables. The CPU performs this translation in hardware every time a virtual
address is accessed.

isolation mechanism is also achieved through a combination of hardware
and software.

We do not delve deeper into the advantages of virtual addresses in
terms of system utilization but we briefly discuss how they help in terms of
isolating applications at the same privilege level. Assume that two instances
of the same applications are running at the same time. These will try to
access the same addresses, and if they were writing to physical memory,
they would sooner or later modify the same variable and corrupt each
other. With virtual memory addressing, the OS can set up translations to
non-overlapping physical addresses for each application. Therefore, even if
the same virtual address is referenced by both, they will access physically
different locations in memory. As long as the OS maps the virtual memory
to separate physical memory ranges for each application, it is impossible
for one application to access the memory of another.

As system software manages the virtual memory translation, it is always
capable of accessing the memory of lower-privileged execution contexts.
Thus, the TCB of the OS does not include any application, but the TCB
of each application contains the application itself the all of the software
running on the more privileged layers above. ARM and x86 CPUs support
several memory paging modes. Here, we describe the most used one in
x86 CPUs to handle virtual-to-physical address translation. It uses a 4-level
hierarchical lookup table structure to perform the translation. The base of
the first table of this structure is stored in the CPU’s CR3 register. Because of
that, system software can store multiple of these structures in memory, and
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Figure 2.5: Context switch steps performed on an x86 CPU to support
multitasking.

when a different translation is desired, say for a different application, the
OS just needs to replace the base pointer in the CR3 register, and the CPU
will use the new mapping. The final address is obtained by using different
segments of the virtual address as indexes to the tables, as depicted in
Figure 2.4.

2.2.3 Using Privilege Levels and Virtual Addresses
To see how the two mechanisms presented above, privilege level separation
and virtual addressing, work together to allow applications to execute on a
separate TCB, we discuss how an OS manages multitasking and switches
between applications on a modern x86 CPU.

Particularly, we do so by going through an example in which two
applications, App A and App B, are executing on the system. As mentioned
above, three events can cause a context switch: system calls, interrupts,
and exceptions. For illustration purposes, we will describe what happens
when the scheduler stops an application to execute another one. We depict
the various phases that occur during a context switch in Figure 2.5 and
describe each of them in the following list, where each number in the list
corresponds to the same number in the figure:

➀ A timer interrupt previously set by the OS scheduler is received while
the core is executing App A. Upon receiving the interrupt, the CPU
flushes its execution pipeline and starts fetching instructions from the
OS entry point of the interrupt. The entry point address is specified
in the IDT, alongside the privilege level that should be set when
handling the interrupt. Before executing the first instruction of the
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entry point of the interrupt, the CPU switches the current privilege
level to the number indicated in the IDT entry. As part of the context
switch, the CPU pushes into the stack the instruction pointer of the
next instruction to be executed in App A. This will be used later when
the OS wants to resume the execution of App A.

➁ The OS saves the context of App A so that it can be used later on to
be restored. This includes saving the register values that the App had
at the moment of the interrupt and the value of the next instruction
address that was pushed into the stack by the CPU.

➂ The OS decides that it wants to now resume execution to another
application that was paused before: App B. It recovers the physical
address of the base pointer of the paging structure of App B and
stores it in CR3. The CPU is now using App B’s virtual address space.

➃ The context of App B is now restored, register values are written back
as they last were when App B was paused, and the address of the
next instruction to be executed for App B is pushed into the stack.

➄ The OS executes a return from the interrupt, using the iret
instruction. This causes the CPU to switch back the privilege level to
privilege level 3, which was the level of App B when it was
interrupted. The CPU starts fetching and executing the instructions
of App B.

This process ensures that multitasking happens transparently from the
point of view of each application, as the context is always perfectly restored.
Finally, note that the registers of the CPU which can tamper with the
isolation between applications and OS (i.e., IDTR) are not accessible by the
applications, and ditto for the CR3 register which could allow an application
to modify its virtual addresses. These two mechanisms thus ensure that no
application can access other applications’ memory and tamper with the OS
execution.

However, the OS not only can modify the mapping of every application
but can also modify their register values and skip or modify any code or
data of the application. While this trust in the OS is needed with the system
design we described so far, it is not always desirable, as we will see in the
next section.



2.3 Trusted Execution Environments 27

Figure 2.6: Total reported CVEs (irrespective of severity) by year for three
popular Operating Systems: Linux, Windows 10, and Mac OS X. Data from
[41]. The figure also depicts a linear regression model fit over the data
points for each OS to highlight the trend over the years.

2.3 Trusted Execution Environments
System software nowadays is packed with functionality and complexity,
with more being introduced with every update. Tasks such as memory
management, file systems, drivers, and firewalls all execute as part of
system management software, be it the OS or the hypervisor. Albeit
establishing a precise model between the complexity and the number of
bugs or vulnerabilities in a codebase is not trivial [40], intuitively, the
higher these metrics, the higher the probability that at least a critical
vulnerability will be present in the codebase. The number of Common
Vulnerabilities and Exposures (CVEs) identifiers released for various OSs is
a relevant proxy to the number of vulnerabilities present in their
codebases. Figure 2.6 shows the reported CVEs for Microsoft’s Windows
10, Apple’s Mac OS X, and the Linux Kernel. Despite them being from
different vendors, all these OSs exhibit an upward trend over the years in
the number of reported CVEs. On the other hand, as we saw before, every
application running on the system has its OS and the hypervisor in its TCB.
While malicious applications are isolated by the OS, chances are that they
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Figure 2.7: Isolation boundaries and software allocation for TEEs across
three architectures: Intel x86, AMD x86, and ARM. The figure shows both a
baseline without protection and four TEEs: Intel SGX, AMD SEV-SNP, ARM
TrustZone, and ARM CCA. Each block in the figure represents an isolated
software module. Vertical separation is achieved through privilege level
mechanisms (cf. Section 2.2.1), while horizontal separation is enforced
for lower levels by software executing on the level above. Double lines (∥
and |||) only apply to ARM. Particularly, ||| applies to ARM TrustZone, and
represents one-way isolation: secure word software can access the normal
word memory, but the opposite is not possible. ∥ applies only to ARM CCA
and represents full isolation: Realms cannot access the rest of the system,
and the rest of the system cannot access the Realms.

can escalate their privileges by exploiting a bug in the OS or hypervisor,
then gaining complete control of the system.

Hardware supporting Trusted Execution Environments (TEEs) pushes
additional primitives in hardware so that hypervisors and OSs do not
necessarily need to be present in every TCBs. Different flavors of TEEs
exist and have been proposed both by industry and academia [9]. Here, we
discuss four major commercial ones: Intel SGX [10], AMD SEV [42], ARM
TrustZone [8], and ARM CCA [12]. We present an overview of these TEEs
in Figure 2.7. Particularly, the figure shows what parts of the software stack
these TEEs are able to isolate. We generally refer to the isolated execution
context enabled by these TEEs as enclaves.

Among the mentioned TEEs, Intel SGX is the one that allows to reduce
and isolate the TCB the most. The enclave in Intel SGX is formed by a
single application. As Figure 2.7 shows, the CPU is able to track a single
application, which can then execute safely even if any other application
and system management software is compromised. However, this comes at
the cost of expressibility, as interaction with system software is reduced,
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and applications need to be carefully refactored in order to safely utilize
SGX.

AMD SEV-SNP instead isolates entire virtual machines (VMs). Thus an
enclave in AMD SEV-SNP is a whole VM. This is the same level of isolation
provided in software by the hypervisor, but the advantage is that by using
hardware primitives, the hypervisor is removed from the VMs’ TCB, as
shown in the figure by the SEV-SNP boundary. In terms of programmability,
this additional layer of isolation comes almost for free, as the same code
that runs on a normal VM can run in a SEV-SNP VM.

While both Intel SGX and AMD SEV-SNP specialize the execution context
so that the CPU can isolate lower privileged layers from higher privileged
ones, ARM follows a different philosophy. Particularly, it allows to manage
separate address spaces so that the entire stack can be replaced if execution
on a separate TCB is desired. ARM TrustZone, divides the address space into
two: Normal Wold and Secure World, with the latter being the enclave. Both
these spaces execute full software stacks, including possibly a hypervisor.
The idea in terms of TCB reduction is that, generally, the Secure World
executes a smaller code base. These two address spaces are also hierarchical,
as the software in the Secure World can access (read and write) the memory
of the Normal World, but the software executing on the Normal World
cannot access the Secure World memory.

ARM CCA splits the address space in an additional range, which is
neither accessible by the Normal World nor the Secure World. This allows
the definition of Realms, whose isolation is enforced by the Realm Manager
(RMM). The realm manager is intended to be a thin software layer, and
realms can be simple applications or full VMs. So in a sense, the CCA
extension gives a similar primitive as AMD SEV-SNP, with the additional
requirement of having to include the RMM in the TCB of every Realm.
Realms are meant to be separate enclaves in ARM CCA, although effectively,
they all share the same RMM in their TCB.

Throughout the rest of the thesis, we focus mostly on Intel SGX and
AMD SEV-SNP, so we do not delve deeper into the ARM inner workings here.
Next, we describe in more detail three crucial aspects of Intel SGX and AMD
SEV SNP: how they keep track of a more specialized execution context,
how they provide memory isolation, and how they provide attestation.

2.4 Intel SGX
Intel Software Guard eXtensions (SGX) is a novel Trusted Execution
Environment technology that introduced processor extensions, which
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allow for processor-supported application isolation and attestation [43].
As we mentioned in the previous section, software executed in SGX
enclaves is isolated from all other software running on the system,
including system management software. Enclave memory is encrypted and
integrity protected whenever it is moved outside the CPU. These
mechanisms are used to protect against a physical attacker that can
tamper with DRAM or the memory bus. Integrity protection also includes
freshness information to prevent replay attacks.

Like in classical applications, the OS remains in charge of managing
the enclave’s memory through memory paging. The OS is responsible for
starting and scheduling enclaves but should not be able to interfere with
their execution or compromise the integrity and confidentiality of their data.
SGX further supports attestation, through which other enclaves or remote
parties can verify enclave code and establish secure channels with enclaves.
Finally, enclaves can seal data to disk using CPU-generated enclave- or
developer-specific keys. SGX was therefore designed to operate under the
model of a local physical adversary, who is in full control of the OS and can
schedule and interrupt the execution of enclaves. The physical attacker is,
however, assumed not to be able to physically compromise the CPU die.

Next, we briefly explore the lifecycle of an SGX enclave, how
transitioning between enclave and non-enclave mode works, and how
enclaves are attested. For a more thorough discussion of these steps, we
refer the reader to Costan et. al [43].

2.4.1 Enclave Lifecycle
A key design decision in SGX relates to how much of the management
of the enclave memory is offloaded to the CPU as compared to what is
kept as the responsibility of the OS. As we discussed, offloading isolation
enforcement to hardware increases its complexity, but the OS is untrusted
in SGX’s attacker model. SGX strikes a middle ground by assigning the
heavy lifting to the OS while leaving the CPU “only” the responsibility to
verify that the OS is not being malicious. Particularly, the OS is kept in
charge of managing the virtual memory mapping for the enclaves, just as if
the enclave was any other normal application. In this model, memory can
be shared through the virtual memory system between an enclave and a
non-enclave application, and the OS can still swap pages out to disk if it
needs to free up system memory. To enforce isolation, the CPU makes an
enclave’s memory inaccessible from any execution context but the one of
the enclave that owns the memory. For this to be possible, the CPU needs
to track the virtual address mapping assigned by the OS and ensure that it
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Figure 2.8: Life cycle of an Intel SGX enclave. The OS and the untrusted host
application are depicted in red, as they are not trusted in the SGX attacker
model. Some instructions require privilege level (PL) 0 to be executed and
can thus be done only by the OS. The enclave executes with the privileges
of a user-level application (PL = 3).

stays consistent throughout the lifetime of an enclave. For enclave memory
pages that the OS wants to swap to disk, the CPU encrypts the page and
then passes it back to the OS. When the OS wants to restore the page, the
CPU ensures that the OS assigns it the same virtual to physical mapping.
These are just some examples of the operations the CPU needs to perform
to guarantee that the virtual to physical mapping is not being tampered
with by the OS to break either the enclave integrity or confidentiality.

As can be inferred by this brief description of the functionalities that
SGX needs to support, its operations are quite involved. In fact, rather than
being implemented purely in hardware, they are implemented in a special
form of microcode, referred to as XuCode [44] by Intel. All the interactions
between the OS and the CPU regarding SGX happen by executing SGX
instructions, which are architecturally defined in the x86 Instruction Set
Architecture (ISA). These instructions (and some implicit events) are then
implemented in XuCode. XuCode can be thought of as a small program
written in basic microcode instructions (microops) rather than in the x86
ISA. Each XuCode instruction, much like the x86 ISA instructions, is then
executed by (thousands of) microops. Note that the XuCode is signed by
Intel and is akin to firmware, given the architectural level at which it
operates.

Next, we explain several key steps in the lifecycle of an SGX enclave.
These are depicted in Figure 2.8, which shows how some of the instructions
introduced with SGX are used to allow the OS to manage an enclave
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memory, all while keeping it inaccessible to the OS. The numbers in the list
below correspond to the numbers in the figure and describe some of the
tasks performed with each SGX instruction shown in the figure:

➀ The OS issues the ECREATE instruction to initialize a new enclave.
With this instruction, the CPU receives initial parameter values to
initialize the enclave. For instance, these parameters define the size
of the enclave, its base address in the virtual address space, whether
the enclave is in debug mode, and whether it is in 64-bit mode, to
name a few. This information is stored in a structure known as the
SECS, which is created by the CPU as part of ECREATE and is stored in
the Processor Reserved Memory (PRM), a range of memory reserved
at boot for SGX, which is inaccessible to any system management
software (including the OS).

➁ The OS then starts populating the memory of the enclave. Memory is
added one memory page at a time using the EADD instruction. Among
its parameters, EADD needs two virtual addresses (VA). The first is
the VA of the source page in non-PRM memory. The second is a
destination VA which is mapped to a physical address (PA) in the
Enclave Page Cache (EPC), a subset of the PRM reserved to store
enclaves’ pages. The EADD implementation (XuCode) ensures that the
destination VA maps to a PA in the EPC, which is not being used by
any enclave. If these and other checks succeed, the CPU copies the
source page in non-PRM memory into the specified destination page
in the EPC. As part of this process, the CPU also records the mapping
from VA to EPC PA so that it can ensure that the OS does not, at a
later stage, maliciously remap the enclave memory. Upon issuing an
EADD, the CPU extends the enclave measurement, which, as the name
suggests, is a measurement over the code and data of the enclave. The
measurement is a fundamental part of attestation, as we will see later.
EADD only extends the measurement to record that a page was added
but not what the content of that page is. To include the contents
of the page in the enclave’s measurement, the OS executes several
EEXTEND instructions. EEXTEND includes 256 bytes of memory in the
enclave’s measurement. Thus, it needs to be called 16 times for each
added 4kB page. Both EADD and EEXTEND are repeated by the OS for
each page that needs to be loaded, and by the end of this operation,
the initial enclave code and data will have been copied into the PRM,
and their content will be reflected in the enclave measurement.
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➂ When the OS is done adding memory pages to the enclave, it issues
the EINIT instruction. This instruction freezes the memory of the
enclave, meaning it will not accept any more pages via the EADD
instruction, and the measurement is finalized. The enclave is now
ready to be executed.

➃ The untrusted application can call the enclave via the EENTER
instruction. This instruction is unprivileged, as opposed to the
previous ones, which can only be called by software running on
privilege level 0. The enclave now starts executing one of its
functions, the one specified in the parameters of EENTER. For the
same control-flow integrity reasons that we discussed for the OS in
Section 2.2.1, the enclave can only be called from well-defined entry
points.

➄ Any exception or interrupts during the execution of the enclave cause
an asynchronous exit (AEX) event. AEX is implemented in XuCode,
as an exit from an enclave includes several operations. As part of
an AEX, the CPU saves the execution context of the enclave before
exiting in a part of the PRM known as the SSA. It also cleans the
register status before transferring control to the exception or interrupt
handler. These handlers are implemented in untrusted code, so the
CPU makes sure that the handlers cannot leak data by observing
the intermediate values of the enclave’s registers. Finally, the CPU
transfers execution to the OS handler.

➅ One of the differences between a normal application being
interrupted and an enclave being interrupted is how the interrupted
execution context is restored. In a normal application, the CPU
simply saves the current instruction pointer (RIP) in the stack. The
handler then terminates by issuing an iret instruction that
implicitly pops the RIP from the stack and resumes execution, as
discussed in Section 2.2.3. For SGX, the RIP is sensitive, as it reveals
at what point of the execution the enclave was interrupted. As a
consequence, the CPU saves it in the SSA as part of the AEX together
with the other register values. A RIP value is still pushed in the stack,
but it is the RIP of the Asynchronous Exit handler Pointer (AEP).
This is done to maintain the same semantics of a normal
interrupt/exception termination. When the OS is done handling the
exception/interrupt, it thus executes an iret which causes the AEP
code to execute.
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➆ The AEP is specified as part of the enclave creation and points to a
routine of the SGX SDK (present in the untrusted application
process) that eventually executes the ERESUME instruction. ERESUME
takes care of restoring the enclave register from the SSA, including
the instruction pointer (RIP). This allows the enclave to resume
transparently. Note that steps ➄ and ➅ can occur several times
during an enclave’s function call.

➇ The enclave terminates execution. The EEXIT instruction is executed
by the enclave causing the context to be switched back to the
untrusted app. If there are any return values from the enclave call,
they are copied back to the calling untrusted application.

The steps described above give an overview of how the OS cooperates
with the SGX CPU implementation to manage enclaves while still not being
able to access them. At their core, these properties rely on the fact that the
OS cannot access the PRM. Note, however, that the PRM does not store any
memory mapping, so the memory translation routine for code execution in
SGX needs to verify at every access that the memory view is still the same
that was set up through the EADD process. Finally, loading secrets into the
enclaves cannot be trivially done at initialization because the OS has access
to the cleartext code and initial data. Attestation, which we discuss next,
allows to securely provision secrets after the enclave has been initialized,
and thus when the OS is not able anymore to tamper with the enclave’s
memory.

2.4.2 Attestation
By itself, the enclave can never ascertain whether it is running in an isolated
enclave environment. From its point of view, there would be no difference
between the case in which it is running on a legitimate enclave and the
case in which its memory is being corrupted by the OS to make it behave
as if it was.

Attestation provides a solution to this problem by proving to third parties
that an enclave was set up correctly. These third parties can then interact
with the enclave if they accept the attestation proof. The measurement
produced as part of the enclave setup, known as MRENCLAVE in SGX, is used
to prove that the enclave was correctly initialized by the OS. The mechanism
that enables attestation is simple: the CPU computes MRENCLAVE as memory
is being added to the enclave and then signs it upon request. Since the OS
does not have access to the attestation key and cannot modify the value
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of MRENCLAVE (because it is kept in PRM), by checking that MRENCLAVE
matches an expected value and that the signature is correct, third parties
know that the expected enclave was set up correctly.

However, while the idea behind this mechanism is simple, the protocols
involved are quite complex. This stems mainly from the problem of verifying
that the signing key is that of a legitimate Intel CPU. We discuss how SGX
solves these problems and the limits of this solution in Chapter 7. For now,
we mention that the problem is treated differently depending on whether
the third party receiving the attestation proof is running on the same CPU.
Particularly, local attestation allows an attestation report to be verified if
the enclave and the attestation verifier are running on the same CPU, while
remote attestation is used when they are not.

Local Attestation. Local attestation works by running two SGX instructions
which will produce the same key material only if they are running on the
same CPU: EREPORT and EGETKEY. To explain how they work, take two
enclaves: enclave A, with measurement MRENCLAVE_A, and enclave B, with
measurement MRENCLAVE_B.

Enclave A executes the EREPORT instruction, providing MRENCLAVE_B
as one of the inputs. As the output of the instruction, the CPU produces
a signed attestation report of MRENCLAVE_A. The signing key that the CPU
uses can only be obtained by Enclave B if Enclave B is running on the same
CPU. Note that Enclave A did not get this key, but just a report signed
with it. Enclave A can then send the report to Enclave B. Enclave B can
then call EGETKEY, which will generate the same key that was used to sign
MRENCLAVE_A if and only if Enclave A and B are running on the same CPU.
Enclave B can verify the local attestation report by signing MRENCLAVE_A
with its key and checking whether the signature matches.

The CPU derives these keys from secret root key material present since
manufacturing on its EFuses. Since each CPU has different root keys, local
attestation reports will only be accepted if coming from the same CPU. We
discuss these keys in more detail in Chapter 7 when we analyze more in
detail their derivation process.

Remote Attestation. Remote attestation allows to attest to a verifier
executing on a remote platform. The challenge in this type of attestation is
to assert that a given attestation report was signed by a legitimate CPU.
There are different flavors of remote attestation. Linkable mode and
non-linkable mode [45] and Data Center Attestation Primitives
(DCAP) [46]. Intel can attest the authenticity of its CPUs as it knows part
of the key material in them. Therefore, in linkable and non-linkable mode,
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remote attestation works by having the CPU attest to an Intel Attestation
Service (IAS) first and then by having the remote verifier ask the IAS to
check whether a particular attestation quote came from a legitimate Intel
CPU. In DCAP mode, the IAS is removed from the attestation flow, with
Intel allowing customers to set up their own attestation services. Still, to
bootstrap an independent attestation service, clients need to ask Intel to
confirm the authenticity of a CPU in a one-time registration process.

2.5 AMD SEV-SNP
For an overview of how AMD SEV-SNP works, we refer the reader to the
offical AMD documentation [11]. In this section, instead, we focus on the
similarities and differences between AMD SEV-SNP and Intel SGX. In the
following, we might refer to AMD SEV-SNP simply as AMD SEV.

Like in SGX, SEV enclaves’ memory is encrypted, but the integrity
protection provided is weaker. SEV-SNP protects the integrity and
freshness of memory only against a software adversary but not against a
physical adversary [11]. This is done by preventing the hypervisor from
accessing enclaves’ memory and by storing authentication tags for
swapped-out enclave pages. A physical adversary can still corrupt the
integrity of data-in-use in DRAM.

Besides this, the biggest difference between the implementation of
AMD SEV and SGX stands in the fact that AMD delegates all the isolation
and enforcement of SEV to a CPU coprocessor, known as the AMD Secure
Processor AMD-SP and as the Platform Security Processor (PSP). As an
interesting parallel to the Intel XuCode, the PSP uses a different ISA
compared to the main CPU cores. The PSP is an ARM core with ARM
TrustZone.

In terms of TCB isolation, as mentioned, SEV isolates entire virtual
machines (VMs) rather than single applications, as done in SGX.
Nonetheless, the process of initializing and launching an enclave
resembles the process shown in Figure 2.8. The difference is that there is
no untrusted application, and instead of the OS, it is a hypervisor which is
allocating pages for the enclave. The hypervisor sends commands to the
PSP instead of simply executing instructions. That said, the semantics of
the instructions are similar. For instance, in step ➀, instead of ECREATE,
the hypervisor sends a SNP_ACTIVATE command to the PSP, or in step ➁,
pages are added using the SNP_LAUNCH_UPDATE command instead of EADD.
It goes without saying that SEV also has some nuances not present in SGX.
For instance, secrets are passed from the PSP to the SEV VM by using a
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dedicated page which is accessible only by the VM and not the hypervisor.
This page is created during VM initialization. Finally, since SEV operates at
the VM level, a notable primitive provided by SEV and not by SGX is one
that allows VM migration from one AMD SEV-SNP CPU to another. As part
of this primitive, the PSPs in the two CPUs communicate to exchange
encryption material necessary to migrate the VM. More details on the
interface provided by the PSP to manage an SEV enclave can be found in
the SEV firmware ABI specification [47].

AMD SEV does not provide any specialized mechanism for local
attestation. Remote attestation is achieved by asking the PSP to sign the
enclave measurement that was created and maintained by the PSP as
pages were added to the VM, in a similar manner as done with SGX. The
difference in terms of verifying the attestation is that the remote verifier
does not need to contact AMD for each attestation verification. The PSP
uses a public key to sign the attestation quote. On the first verification, the
remote verifier can ask AMD for a certificate chain up to that key. If that
chain exists, the remote verifier knows that the key came from a legitimate
AMD CPU and, thus, that the PSP is protecting the VM. However, on a TCB
update, e.g., when updating the PSP firmware, the public key changes, and
thus a new certificate chain needs to be obtained from AMD to validate the
new public key. More details on this process are discussed in Chapter 8.
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Chapter 3

Frontal Attack

3.1 Introduction
While there are many TEE proposals [43, 48, 13, 49, 50, 51, 42], they are
unified in their goal: providing an integrity and confidentiality oasis in an
environment ruled by malicious operating systems and hypervisors. The
fundamentals for this oasis are rooted in the lowest level of the computing
stack: the CPU. When application security is provided through CPU
primitives, the layers above need not be trusted. Intel SGX [43] is the most
widely deployed among all the TEE proposals, being available in almost
every modern consumer CPU Intel manufactures. It protects applications
by running them in enclaves. SGX authenticates and encrypts enclaves’
memory accesses that cross the CPU boundary and blocks any other
software in the system, including OS and hypervisor, from accessing
enclaves’ code and data. Nevertheless, as protected as they might be,
enclaves do not execute in isolation. Enclaves share resources with other
applications running in the same system, particularly memory and CPU
time. By design, SGX leaves the (untrusted) OS in charge of managing
these resources.

However, whenever shared resources are involved, so are side channels.
Researchers were quick to point out this shortcoming of SGX [43, 15, 52,
53, 17], casting doubt into enclaves’ ability to provide confidentiality, one of
the core TEE goals. Intel acknowledged the problem but shifted the burden
of protecting against side channels to enclave developers [54]. Curbing side
channels is not trivial, and in the case of SGX, it is particularly challenging
due to the role the OS plays. To manage the system resources, the OS is
responsible for the enclave’s scheduling, memory paging, and interrupt and
exception handling, to name a few. These OS capabilities, which the attacker
controls, decrease the noise of traditional side-channel attacks [15, 16] and
enable new types of side channels, called controlled-channel attacks [17].

The first controlled-channel attacks allowed the adversary to observe
enclave accesses at page granularity (4 KiB) without any noise by merely
abusing memory paging. Revoking permissions to the enclave’s pages leads
to page faults, which in turn give the OS attacker a trace of every page the
enclave accesses. Initial defenses that worked on the assumption that the
attacker would need to trigger page faults [55] just prompted the emergence
of stealthier attacks that observe page metadata set by the CPU [18, 19]. In
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1 static int mpi_montmul( ... ) {
2 ...
3 if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )
4 mpi_sub_hlp( n, N->p, A->p );
5 else
6 /* prevent timing attacks */
7 mpi_sub_hlp( n, A->p, T->p );
8 return( 0 );
9 }

Listing 3.1: Protection against timing attacks in the latest version (v2.16.6
at the time of writing) of MbedTLS. The library balances branches by having
symmetric execution paths.

response to these attacks, Intel officially recommends that SGX developers
place sensitive data and code within a page [56]. Controlled channels,
however, do not stop at the page boundary. OS capabilities can be used to
enhance cache attacks [15, 52, 53] and extract enough information from
the branch prediction unit (BPU) to give the attacker a branch granular
view of the victim [16, 57, 58]. As this undermines defenses against paging-
based controlled channels, further defenses leveraged the coarse timing
resolution of the attacker and the inability of BPU attacks to leak the target
of unconditional branches [16]. Nemesis [59] later showed that it is possible
to time each instruction through interrupts, invalidating the assumptions on
the best temporal resolution available to the attacker. Therefore, successive
defenses [60] relied upon randomizing control flow through unconditional
jumps to protect enclaves.

The current understanding of the attacker’s capabilities leaves the
impression that as long as branches do not have observable timing
differences, do not leave a different cache trace, and BPU attacks are
prevented, controlled channels can be contained. As shown in the snippet
of code in Listing 3.1, even widely used crypto libraries tend to use
balanced branches1 to “prevent timing attacks.”

This might seem reasonable; after all, the branches in Listing 3.1 would
neither be observable with page attacks, since the same function is called
on both paths, nor with Nemesis, as both paths have the same instructions.
We question this last line of defense by further increasing the attacker’s

1branches that contain the very same instructions on both execution paths
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resolution and demonstrating that virtually any binary with control-flow
secret dependencies leaks information in SGX.

Frontal attack. For the first time, we show that when interrupts are
frequently issued, instructions’ execution time is correlated to their virtual
address and that the fetch and pre-decode module of the CPU frontend
plays a role in this correlation. Based on this observation, we construct a
new attack against Intel SGX that we call the Frontal attack. Our attack
allows an attacker to associate a measured instruction’s execution time
with its offset in the instruction fetch window and, thus, with the
instruction’s virtual address. The attacker can then use these leaked
execution times and addresses to infer control flow and, therefore,
branch-dependent secrets.

We focus on extracting branch-dependent secrets, showing that an
adversary can distinguish between two code sequences executed within
SGX and hence, derive the secret branch condition that led to their
execution. Unlike previous attacks [59, 61], which could only distinguish
between sequences of different instructions, the Frontal attack allows the
adversary to distinguish between two execution sequences even if they
contain identical instructions (and even identical data). These differences
are observable even when the two snippets of code reside in the same
cache line and are thus not susceptible to cache side-channel attacks. We
show that by using the Frontal attack, the adversary can extract the correct
secret from the enclave with a probability of up to 99% on our test
binaries. We discuss how two different libraries, the mbedTLS library [62]
and the Intel IPP [63] Cryptography library, can be exploited using our
attack – showing that, with just a few runs, the attacker can recover the
condition of the executed victim branches with high confidence (> 99.9%),
and that with a single trace, it is possible to recover a full RSA key within
seconds on 65% of the runs (out of 1000). We validated our attack on all
available Intel microarchitectures since the introduction of Intel SGX (up
to Comet Lake at the time of writing). We show that the attack works with
high probability on all tested CPUs irrespective of their microcode version.
We further discuss which system configurations are better than others for
the attacker. For instance, unlike in most other microarchitectural attacks,
disabling hyperthreading helps the attacker.

Defenses. Given the resolution achieved with our attack, a more realistic
SGX adversary model should be one that considers the instruction pointer
to be available to the attacker at any time. Confidentiality in SGX can
only be guaranteed in this model if secret-dependent branching is avoided
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altogether, for instance, by if-conversion [64] or by writing code following
data-oblivious practices [65]. These defenses are effective against any side-
channel attack – including ours. However, practically deploying them is not
straightforward for two reasons. First, general compiler transformations
incur high-performance overheads or require developer assistance to mark
secrets [64]. Second, custom data oblivious solutions are not trivial to
develop correctly and require domain-specific knowledge [65].

These practical hurdles for data-oblivious code have led to several spot
defenses being continuously refined based on the adversary’s capabilities.
We give further evidence in this chapter that these are bound to be broken
whenever previous assumptions about the attacker are challenged.

In summary, we make the following contributions:

• We investigate how frequent interrupts affect instruction execution
times. In particular, we show a dependency between the observed
execution times and their alignments within the CPU fetch window.

• We introduce the Frontal attack. It leverages the dependency between
execution time and virtual address to attack Intel SGX enclaves. The
Frontal attack leaks fine-grained control flow in branches containing
the same instructions, even if they only span a single cacheline. It
can do so with more than 99% accuracy in our synthetic binaries.

• We exploit two commonly used cryptographic libraries using the
Frontal attack: the Intel IPP Cryptography library and the mbedTLS
library. We further test which CPUs are vulnerable to our attack and
found that all available CPUs with SGX at the time of writing (up
to 10th gen) are vulnerable. Newer CPUs that include hardware
mitigations against Spectre [66] seem to be more vulnerable than
older CPUs. We responsibly disclosed the findings to the affected
vendors (cf. Appendix A.1).

3.2 Background

SGX-Step & Nemesis. SGX-Step [67] is an open-source framework that
allows single-stepping through the execution of SGX enclaves. SGX-Step
uses APIC timers to interrupt the enclave after every instruction and
inserts custom routines in between the interrupt handler and the enclave
resumption. It does not rely on any adversarial capability not given in the
standard Intel SGX attacker model, as interrupt handlers and APIC timers
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are controlled by the OS, which is assumed to be under the control of the
adversary.

When an enclave receives an interrupt, it performs an Asynchronous
Enclave Exit (AEX) and then jumps to the interrupt-vector entry defined
in the interrupt descriptor table (IDT) to handle the interrupt. After the
interrupt has been handled, it jumps to the address set in the asynchronous
enclave pointer (AEP). The function in the AEP eventually executes the
ERESUME instruction to resume the enclave [43]. SGX-Step installs a custom
interrupt handler in user space to gain control as soon as possible after
the interrupt. It also replaces the AEP to execute custom instructions right
before ERESUME. SGX-Step uses these modified routines to store the current
cycle count just before entering the enclave and right after an AEX. To
interrupt the enclave at the right time, it configures a cycle-accurate APIC
timer. This timer can be configured so that the execution is interrupted
after a single instruction is executed inside the enclave. These changes
allow an adversary to single-step an enclave and measure the execution
time of individual instructions (including a constant offset by the ERESUME
and AEX).

The Nemesis [59] attack exploits the fact that the interrupt timings
obtained through SGX-Step are correlated with the instruction type
currently pending in the CPU. Since current processors execute some
instructions faster than others, the adversary can make an educated guess
about the type of instruction that was executed in a single step. Based on a
trace of these timings and knowledge of the binary executing in the
enclave, the attacker can detect where the instruction pointer (IP) was in
the enclave when the interrupt was received. Because Nemesis can only
infer the instruction type, it cannot resolve the IP whenever a balanced
branch is executed in the enclave.

CPU Background: The Frontend. Although the x86 instruction set
architecture (ISA) is well specified [37], the microarchitecture is typically
proprietary, and its details are confidential. Generally, the processor core
can be split into three main parts: the frontend, the backend, and the
memory subsystem. Here, we will focus on the frontend of the processor.
For further information on the other components, we refer to [68].

The frontend of a processor is responsible for fetching and decoding
instructions into a format that the backend understands. Modern Intel
processors need to fetch a large number of macro-ops to feed the extremely
performant out-of-order backend. A modern Intel core fetches 16 bytes at
once [68] from 16-bytes aligned blocks, also called the instruction fetch
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window. In x86, there is an extra step during decoding where the fetched x86
instructions (macro-ops) get translated to a different internal instruction
format called micro-operations (micro-ops).

3.3 Overview of the Frontal Attack

Attacker Model. We consider an attacker that wants to leak secret data
from a victim SGX enclave running on a system under their control. The
victim enclave has a control-flow dependency related to the secret data
the attacker wants to leak. The adversary operates under the standard
SGX attacker model [43]. That is, they control the entire software stack,
including the operating system (OS), on the machine in which the enclave
executes. Since the attacker controls the OS, we assume they can disable any
CPU core to reduce noise or prevent the scheduler from running tasks on a
particular core. However, the CPU package is not physically compromised.
We assume that the secret that the enclave holds was remotely loaded after
a successful attestation. Otherwise, if the secret were to be contained in
the enclave code, it would be trivially available to the OS.

Attack Overview. We introduce our attack through an example code snippet
that we show in Figure 3.1a (C code) and Figure 3.1b (x86 assembly). The
code fits in a single cacheline and has a branch whose target depends on a
secret value. On both branches, the code contains the very same instructions
and writes to the same memory addresses. Thus, we expect its execution
time to be independent of which branch is taken and hence not to have
any correlation with the secret input.

However, when the above sequence is run within an SGX enclave,
our attack shows that a local attacker can learn which branch was taken
and, therefore, derive the secret value of the branch condition. Our attack
leverages two main observations. First, even if the branches have the same
instructions, they are often aligned differently within the fetch windows
(Figure 3.1b) – in our experiments, this alone did not produce observable
differences in the execution times (cf. Section 3.4). Second, if the execution
of both branches is frequently interrupted, the difference in their alignments
w.r.t. the fetch windows will cause the CPU to fetch instructions at different
times (Table 3.1), resulting in a measurable difference in the execution
times of the instructions and therefore of the branches (cf. Section 3.4).

To give an insight into why interrupts lead to a successful attack, we
show which instructions are fetched by the CPU when the execution is
interrupted after each instruction. There are two main factors to consider:



3.3 Overview of the Frontal Attack 47

if (secret == 'a') {

var1 = 1 + var1;
var2 = 1 + var2;

} else {

var1 = 2 + var1;
var2 = 2 + var2;

}
return;

(a) C source code of a
secret-dependent branch
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0x3: mov (var1), %rax
0x8: mov (var2), %rbx
0xc: cmp (secret), 'a'
0xe: jnz .else
0x10: add $1, %rax
0x14: mov %rax, (var1)
0x19: add $1, %rbx
0x1d: mov %rbx, (var2)
0x22: ret
...
.else:
0x2b: add $2, %rax
0x2f: mov %rax, (var1)
0x34: add $2, %rbx
0x38: mov %rbx, (var2)
0x3d: ret

(b) Compiled version of the secret-
dependent branch on the left

Figure 3.1: A secret-dependent branch in C and x86 assembly. Both
branches in the assembly code fit within the same cacheline (64B). The
virtual address of the instructions is reported on the left. Note that while
the branches are instruction-wise identical, their instructions get grouped
differently by the fetch window (which always starts at multiples of 16B).

which instructions among those already in the pipeline are retired when an
interrupt is received and how execution is resumed after an interrupt. Intel
guarantees that only the oldest pending instruction in the reorder buffer is
retired 2 before the interrupt is handled [67]. In out-of-order processors,
other instructions might have already been executed, but none of these
will be retired. To resume execution after the interrupt is handled, the CPU
needs to fetch the instruction sequence starting at the current program
counter. However, while the program counter can, in general, have any
value, fetch windows are statically aligned at 16 bytes code blocks [68].
Assume that the program counter falls 5 bytes after the start of the fetch
window. Those initial 5 bytes will be fetched only to be then discarded by
the frontend. Thus out of 16 bytes fetched, only 11 are usable. Now assume

2Or discarded, if it raises an exception
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that the same instruction sequence begins 10 bytes after the start of the
fetch window. Instead of 11 bytes as before, there are only 6 bytes that can
be decoded, meaning we now need two fetch windows (and hence two
cycles) to decode the same number of instructions as we did before in just
one fetch window. Alignment w.r.t. fetch windows can, therefore, change
the order in which instructions are forwarded to other stages of the CPU
and ultimately populate the pipeline. To help clarify this point, for both
branches of our example code, we show in Table 3.1 which instructions are
fetched after every interrupt.

In principle, given the same system conditions, a particular instruction
should exhibit the same time distribution at different virtual addresses.
However, we experimentally observe that depending on the alignment
within a fetch window and the number and type of instructions present
around them, some instructions consistently take longer to execute than
others. In Section 3.4, we provide more details on which alignments of
instructions produce measurable execution time differences. This
observation hence allows us to associate the measured instruction
execution time with the alignment in the fetch window and, therefore,
with the instruction virtual address (i.e., with the instruction pointer).
These leaked execution times and addresses can then be used to infer
executed branches (e.g., when they depend on the secret value). In this
work, we focus on the use of our attack in the context of secret-dependent
branching. In particular, for the scenario given above in Table 3.1, when
enough mov are fetched after a mov in the branch, the interrupt latency is
measurably different. In our example, we measured interrupt #2 in the
table to be faster if the code is executing in the “else” branch, as compared
to the “if” branch, despite the fact that we are interrupting the same
instruction under the exact same system conditions.

Let us again consider Figure 3.1b. By running SGX-Step, we can time
all instructions by stepping through them one by one. As a consequence
of the observations made above, we will observe two scenarios for the 6th
instruction measured, which is the instruction at address 0x14 or 0x2f,
depending on the secret value. If the interrupt is “slower” (compared to the
others measured), we must be executing the mov at address 0x14. Inversely,
if the interrupt is “faster”, we must be executing the mov at address 0x2f.
Since the control flow of the program depends on the secret, this allows us
to recover its value and hence break the SGX confidentiality guarantees.

The snippet presented in Figure 3.1 produces distinguishable timings
for the first mov instruction inside the branch. We were able to use the
timing difference to predict the secret with ≥ 65% accuracy. By adding



3.4 Frontal Attack Profiling 49

Table 3.1: View of how instructions are batched into fetch windows when
the enclave resumes execution, according to which branch is executing. If
an instruction crosses a fetch window boundary, we assume it is decoded
together with the instructions in the following window. The interrupts refer
to the instructions in Figure 3.1b.

If Else

Interrupt #1 add mov add add
Interrupt #2 mov add mov add mov ret
Interrupt #3 add add mov ret
Interrupt #4 mov ret mov ret

three more movs after the branches (which are executed by both paths),
we were able to obtain success rates > 90%. The attack presented above
illustrates how fully balanced branches actually produce secret-dependent
timings when interrupted frequently. Given that this side channel is due
to the design and behavior of the CPU frontend, we name our attack the
Frontal attack. In the following sections, we will analyze our attack in more
detail.

3.4 Frontal Attack Profiling
In this section, we provide more detail and clarification to that help in
understanding under which circumstances the Frontal attack works. More
specifically, we ask and answer the following questions: (i) are the interrupts
required for the attack to be successful? (ii) what are the effects of the
fetch window alignment/instruction address on the attack? and (iii) which
instructions produce observable timing differences?

To answer these questions, we perform experiments over the code
snippet shown in Listing 3.2. Similar to the code in Figure 3.1, this code
snippet contains two perfectly symmetric branches depending on a secret.
It still consists of two perfectly balanced branches but differs in that, now,
each branch contains 25 sequences of add-mov instructions. We chose this
longer code sequence since it produces timing differences that are more
clearly above the noise floor than the code in Figure 3.1 and, therefore,
better illustrates timing and alignment effects under different experiment
configurations. Namely, code sequences that include several mov
instructions, like the one in Listing 3.2, are particularly susceptible to the
Frontal attack and allow us to extract the secret branch condition with an
accuracy of at least 99%, whereas with shorter sequences that contain few
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.align (x - 0x4)
x - 0x004: cmp (secret), 1
x - 0x002: jnz .else

.if:

.rept 25
x + 0x000: add %rax, %rbx
x + 0x003: mov %rcx, (var1)

.endr
x + 0x190: ret
...

.align y

.else:

.rept 25
y + 0x000: add %rax, %rbx
y + 0x003: mov %rcx, (var1)

.endr
y + 0x190: ret

Listing 3.2: ASM Code with high attack success probability, which we use
to profile the attack. The .rept 25 ... .endr assembler directive repeats
the instructions within the block 25 times, leading to an address of x+0x190
for the ret instruction.

movs (like the one in Figure 3.1), this accuracy drops to ≥ 65%. We discuss
this effect in more detail later in this section.

3.4.1 The Role of Interrupts
To analyze the effect of frequent interrupts on the behavior of the processor,
we measure the execution time of our test code snippet (Listing 3.2) with
and without interrupts.

Outside SGX without Interrupts. We first measured the overall execution
time of the code snippet outside SGX without interrupts. We executed the
code with two billion independent random inputs, and we observed no
significant correlation between execution times and the branch that was
executed (Pearson’s coefficient= −2.51·10−5). An approximate distribution
of this measurement is shown in Figure 3.2.

In SGX without Interrupts. In order to exclude any effect due to SGX,
we further measure the overall execution time of the code within an SGX
enclave, again without interrupts. Note that SGX does not provide any way
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Figure 3.2: Distribution of the overall execution time of the branches in
Listing 3.2 when run outside of SGX without interrupts (computed from
2 ∗ 109 samples).

to get a precise timer (cf. Chapter 2), so we have to measure the execution
time from the untrusted app.

We perform this measurement using three different methods. All
methods use the same code snippet in a loop, but they differ in how the
measurement is collected and where the loop is executed. We do this to
filter out any effects of the enclave entry and exit operations. First, we
measure a whole enclave call from the untrusted app. Multiple
measurements are collected by having a loop in the untrusted app. Second,
we run the loop entirely inside the enclave and collect the iteration
execution time with two ocalls to the untrusted app. The two ocalls are
done at the beginning and the end of each loop iteration. Third, we use a
similar setup as the second method, but instead of performing ocalls, the
enclave samples the value of a counter stored in shared memory. A thread
of the untrusted app increments the counter in a loop, thus simulating the
time stamp counter, albeit at a lower precision. All three methods use an
independent uniform random value as the “secret” given to the code at
each iteration.

For all three methods, similar to the experiment outside of SGX, we
observed no significant correlation (Pearson’s coefficient ≈ 10−2 with 106

runs) between the execution time and the secret provided to the enclave.
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In SGX with Interrupts. We now investigate which effects frequent
interrupts have on the execution time of the code. We execute the same
code snippet as before, but we interrupt it after each instruction. Upon
each interrupt, the CPU performs an asynchronous enclave exit (AEX),
handles the interrupt, and then performs an ERESUME to resume the
enclave execution. Such an experiment would normally require very fast
and extremely precise interrupts, which is usually hard to achieve.
However, in the case of a victim code running within SGX, we can use
SGX-Step [67] to single-step through each instruction and collect its
execution time. Given these interrupts, we can not only measure the
overall execution time but also the execution time of each instruction. This
means that in each run of our code, we obtain 51 measurements 3.

We then analyzed whether any of the 51 measured instruction execution
times correlate with the executed branch. We observed a strong correlation
between the timings of most of the instructions and the branch they belong
to. The first 10 mov instructions in the branch turned out to be a more
robust indicator of which branch was taken, but all the other instructions
belonging to the branch showed some correlation, albeit a weaker one 4.

As in Section 3.3, we observed the execution time of the first mov in
each branch to be faster or slower, depending on the branch it belongs
to, with a difference between the slower and faster mov of around 100
cycles. This observation allowed us to set a timing threshold with which
we could, with up to 99.9% accuracy, determine which branch was taken
and therefore determine the secret branch condition.

We stress again that the two branches are instruction-wise identical: the
instructions they contain and their inputs are the same. This is especially
important because it highlights the fact that the timing difference is due to
the way the instructions are executed and not some external system state.
For instance, the difference cannot be due to the state of the cache, the state
of the branch predictor, or in general, to some speculation decisions made
by the CPU. If the cause of the differences were to be due to any of these
factors, we would expect two key differences. First, as we choose secrets
at random, these effects would manifest with equal probability in any of
the two branches. Second, we would expect the experiments in which we
do not interrupt the code to also show some bias. However, we see a clear

3There are 52 instructions in Listing 3.2; however, the first cmp and jnz get macro-fused
into one instruction which usually is not split again by interrupts (cf. Section 4.6.1).

4The timings of the initial cmp and jnz were independent of the executed branch – only
instructions within the branches were correlated with the secret.
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bias in one of the two branches, and the interrupt-free runs showed no
correlation with the secret.

Observation 1.1: When code execution is frequently interrupted, the
execution times of selected instructions depend on their location in
the victim binary and, therefore, on their virtual memory address.

3.4.2 Relationship to Virtual Addresses
While the instructions in both branches are identical, there is one key
difference between them: their virtual address. Therefore, we analyze what
virtual addresses make the two branches distinguishable when frequently
interrupted – and to what degree. In particular, as discussed in Section 3.3,
we also study how the relationship between the alignment of the branches
with respect to the fetch window affects the success of the attack. As can be
seen in Listing 3.2, we use the align compiler directive to explicitly align
each branch to a given address. With .align X, we indicate that the code
following the directive starts at the next virtual address whose lower bits
are equal to X 5. For example, if X = 3 and Y = 2, then the if branch will
start at address 0x13 and end at address 0x1a3, while the else branch will
start at address 0x1b2.

To evaluate different alignments, we ran an experiment to test if
different values of X and Y in Listing 3.2 have any effect on the observed
timing differences. We repeat the interrupt experiment described at the
end of Section 3.4.1. That is, we send an interrupt to each instruction and
then use the interrupt timing of one of the instructions in the branch as a
discriminator to determine which branch was taken and, thus, what the
secret was. We then calculate the attack success as the percentage of
correctly identified secret bits. Therefore, the attack success rate will tell
us how good a certain combination of the alignments X and Y are for the
attack. The higher the percentage, the better an alignment combination is
for the attack, while a result close to 50% indicates that predicting which
branch was taken is as good as a random guess. We collect these
percentages for each combination of {X , Y } ∈ [0, 31]2 by running the code
in Listing 3.2 1000 times with uniformly random secrets. We use the
timings of the 10th instruction (5th mov) to discriminate between the
branches. Figure 3.3 presents the result of our experiment. These results

5This is equivalent to combining the two gcc asm directives .align (X//2n) and .space
(X%2n) (for the biggest n such that 2n < X )
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Figure 3.3: Attack success rate depending on the alignment of the branches.
The attack success rate is the percentage of correctly guessed branches by
the attacker out of 1000 executed branches. The 10th instruction (5th mov)
from Listing 3.2 is used to distinguish between both branches. The color
gradient goes from darker to brighter, where darker boxes indicate higher
attack success rates (up to 100%) and brighter ones lower success rates
(down to 50%).

show a clear dependency between virtual addresses and the instruction
execution times.

Modulo 16. There are four main quadrants of length 16 that are
essentially identical. This hints at the fact that the behavior with respect to
the alignment of the two branches repeats every 16 bytes. We verified this
assumption by repeating the experiment for every value of X and Y for
which the two branches are still contained in the same 4 kB virtual page 6.
We observed the same pattern for all the quadrants of length 16 in this test.

6We did not cross the virtual page boundary because this would most likely require fetching
pages that are not cached, thus introducing noise that masks the effects that we are interested
in measuring.
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As a consequence of this observation, when we use the term alignment, we
refer to alignment modulo 16.

Observation 2.1: The attack success rate depends on the alignment
modulo 16 of the two branches.

Diagonals. The attack success rate on the diagonals in each quadrant is
around 50%. In the diagonals, both branches are aligned to the same value
X = Y mod 16.

Observation 2.2: Branches and instructions with the same alignment
will show the same execution times.

Symmetry. The attack success rates are symmetric with respect to their
diagonal, meaning that the success of the attack when the “if” branch is
aligned at address X and the “else” branch at address Y is the same when
the alignment of the branches is switched.

Observation 2.3: Alignments X , Y and Y, X produce the same attack
success rate.

Shape. Finally, we focus our attention on the alignments in the heatmap
in which the success rate is above 70%. These success rates are grouped
into rectangles. Within each of these rectangles, there are three regions
of decreasing intensity. The most interesting alignments are the ones that
give the higher attack success rates, as they allow to optimize the accuracy
of the attack. The best results are concentrated on rectangles of size 3× 5.
This corresponds with the length in bytes of the two instructions within the
branch in Listing 3.2. The add instruction has a length of 3B, while the mov
we use in Listing 3.2 has a length of 5B. Unfortunately, this rule does not
trivially generalize with more complex instruction size combinations.

Note that there are only a few structures in the CPU that are sensitive
to the alignment of the instruction, and in particular, to their alignment
modulo 16. On Skylake and Coffee Lake architectures, one of them is
the instruction pre-decode and fetch module in the frontend of the CPU,
which uses a fetch window of 16 bytes to fetch instructions from the L1
instruction cache. We cannot be entirely sure about the internal behavior
of the CPU and what leads to the timing differences in the two branches.
However, as discussed in Section 3.3, the different alignment changes the
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Figure 3.4: Timing distribution of a mov to the stack when executing it in
a trace containing 100, 000 repeated add-mov instructions (unrolled).

way instructions are batched by the frontend and, ultimately, the timing
at which they are delivered to the subsequent stages of the CPUs. The
experiments presented in this section strongly suggest that these fetching
differences have repercussions for the instruction’s execution time. We will
discuss potential causes that could lead to the observed variable timings in
Section 3.7.

3.4.3 The Effects of Instruction Alignment
To study the effects of the instruction alignment, we analyze the timing
distributions of a linear code sequence of 100,000 repeating add-mov. Note
that essentially this is an unrolled loop, which, compared to a normal loop,
removes the noise that the loop-control instructions would introduce. We
do not envision any real code to have such a sequence of instructions, but by
exploring the patterns that emerge from these instructions, we can gather
several insights about how the differences in branch alignments manifest.

The timings are collected using a slightly modified version of SGX-
Step, whose changes are described in Appendix A.3. The timing of each
instruction includes the time to perform ERESUME, the time to execute the
instruction, and the time required to perform AEX. ERESUME and AEX prepare
the CPU for the enclave execution and clean the state when returning to the
untrusted app. These operations take thousands of CPU cycles to complete,
and this is why, despite the fact that we are measuring a single instruction,
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the latencies reported in the graphs are in the order of thousands of cycles.
We use two figures to illustrate different aspects of the timing latency of
the same run: (i) Figure 3.4 depicts the overall latency distribution of all
the movs, and (ii) Figure 3.5 the distribution separated by particular virtual
addresses.

Distribution of Instruction Execution Times. In Figure 3.4, we present
the distribution of the instruction execution times, estimated from all the
100,000 executed mov. The most evident feature of this distribution is
that it consists of a bimodal Gaussian distribution. The movs are therefore
exhibiting two different distribution modes whose peaks are, on average,
around 100 cycles apart. We refer to the mode with the lower average and
the one with the higher average as the fast mode and slow mode, respectively.

Observation 3.1: The timing distribution of the movs follows a
bimodal distribution. The peaks of the two distribution modes are
around 100 cycles apart.

In general, we observed similar results with other instructions that
access memory, such as add to memory. We remark here that these
differences are not due to the state of the L1 data cache. We ensure this by
running the victim enclave on a dedicated physical core in the system and
by always performing the same operations while handling interrupts. We
further verified with the OFFCORE_REQUESTS_ALL_REQUESTS performance
counter that no extra off-core memory transactions were being performed.

Observation 3.2: Observation 3.1 applies not only to movs but to all
memory writes.

Instruction Execution Times by Alignment.
Regarding alignment, there is an important characteristic of the chosen

instruction sequence that has not been considered in our analysis thus far.
Each couple of add-mov in the sequence has a length of 8B, which is a
multiple of 16. This implies that the movs can only be aligned modulo 16 in
two different ways. In general, by testing the sequence with different initial
offsets, we observed movs at addresses between 1 and 8 to be
predominately slow and movs at addresses 9 to 16 to be predominately
fast. We highlight that the two alignments are only predominately fast (or
slow), and, usually, they exhibit timings from both distribution modes. We
can think of each instruction at a given alignment to have a certain
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Figure 3.5: Timing distribution of the movs from Figure 3.4 grouped by
their virtual address alignment.

intrinsic probability p to exhibit the fast mode and probability 1 − p to
exhibit the slow mode every time it executes. Different alignments have a
different value of p. Figure 3.5 shows this phenomenon for two particular
alignments (0x6 and 0xe). As can be seen, alignment 0x6 is predominately
slow, but some of its timings exhibit the fast mode as well. The plots for
other alignments are similar, with the only difference being the size of the
smaller peaks.

Observation 3.3: The alignment of the memory writes determines
how their latency will distribute between the fast and slow distribution
modes.

The value of p relates to the attack success rate. Say that one branch is
aligned such that the measured mov has p ≥ 0.9, and the other is aligned
to have a p ≤ 0.1, then the branches are easily distinguishable, and a high
success rate will be observed. If one of them has 0.3 ≥ p ≤ 0.7, and the
other has a very small or very high p, as is the case for the distributions
in Figure 3.5, then one bit can be distinguished with high accuracy, but
the other will contain some errors. If the branches have a p ≈ 0.3 and,
say, p ≈ 0.7, then both branches will be, on average, guessed better than
random but will also contain errors. And finally, if both branches have a
similar p, the success rate of the attacker will be negligible.
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3.4.4 Requirements and Limitations
In our experiments, we only observed timing differences in branches that
contain memory writes. Thus, at least a memory write must be present for the
side channel to emerge. All the other conditions being equal, other memory
write instructions we tested (variations of mov to different addresses and
arithmetic instructions that write back to memory), excluding the push
instruction, exhibited the very same behaviors as described so far. Notably,
instructions that are surrounded by other memory writes also show a timing
difference, albeit usually smaller. Furthermore, the timing distribution of a
memory write is not only determined by its alignment in isolation but it
is also influenced by the number and alignment of surrounding memory
instructions. For instance, the more memory writes in the branch (or even
right after it), the more distinguishable the distributions will be, increasing
the probability of success of the attack. Another element we were able to
characterize relates to the vicinity of the memory instructions with each
other. Particularly, when writes are executed in a loop, the attack success
probability is higher if the loop executes only a few instructions (around
10) in between writes, and the fewer, the better for the attack.

It is worth noting that simultaneous multi-threading (SMT) was a big
source of noise in our experiments. When the core co-located with the
victim is executing a CPU-heavy workload, we were unable to observe any
significant timing difference. In general, the Frontal attack is more reliable
if SMT is disabled or the virtual core co-located with the victim is idle.
We speculate that this is most likely due to how the frontend handles and
fetches instructions coming from different virtual cores, but possibly also
to the resulting lower interference in the memory subsystem.

3.5 Frontal Attack Exploitation
The Frontal attack exploits control-flow secret dependencies. Therefore, the
first step of the attack is to identify target code paths in the victim binary
which execute secret-dependent branches. Several techniques have been
proposed to automate finding such code paths [69, 70]. Among these code
paths, as discussed before, the attacker should choose those that contain
at least one memory write. Until now, we mainly focused on balanced
branches, but unbalanced branches are also distinguishable with our attack.
As unbalanced branches can be exploited with other attacks as well, we
focus on more challenging balanced branches in our example exploits below.
Balanced branches are not rare in compiled code. In fact, we found two
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code patterns that commonly lead to this type of branch: slightly different
return statements, and inlined function calls with different parameters.

In the following, we give examples of vulnerable branches satisfying
the conditions above in two libraries: the Intel IPP Cryptography
library [63], and the mbedTLS library [62]. We note that since a
secret-dependent code path must be present, branch-prediction attacks can
also exploit the binaries vulnerable to the Frontal attack. For instance, the
examples we present below, when compiled with gcc, are also vulnerable
to branch-shadowing attacks [16]. However, when compiling the mbedTLS
library with the compiler from Hosseinzadeh et al. [60] (which is designed
to prevent branch-shadowing attacks), all the branches are translated to
indirect unconditional jumps, which are hitherto not vulnerable to any
known BPU attack. On the other hand, we verified that even when using
the compiler from Hosseinzadeh et al. [60], the branch targets are
unchanged and have, in general, different alignments, thus remaining
vulnerable to the Frontal attack. The attacks described in this section were
performed on an Intel i9-9900KS CPU with the latest microcode available
at the time of writing (0xca).

3.5.1 Intel IPP Cryptography Library
The Intel IPP Cryptography library is a cryptographic library optimized
for Intel CPUs and advertised as constant-time [63]. However, through
manual inspection, we identified several secret dependent branches in
its most recent version (2.9 at the time of writing). Among these, the
l9_ippsCmp_BN function compares two big numbers represented as arrays
of integers by iterating through each element of the array. The function then
terminates when a different array entry is found. It can take three different
exit paths, depending on whether the first input is smaller, bigger, or equal
to the second. The smaller-than and bigger-than paths are instruction-wise
identical, while the equal path contains the same instructions as the others
but in a different order. Given that the different order of instructions of
the equal vs. unequal paths can be inferred with other attacks, we focus
on distinguishing the smaller-than vs. bigger-than paths with the Frontal
attack. With branch-prediction mitigations in place, other known attacks
do not allow to leak this information, as all the paths fit in a single cache
line. The exit paths contain a mov to memory, which we target in our attack.
We did not observe any timing difference on this instruction alone, despite
the fact that the paths start at different alignments; this is expected as the
memory write is executed only once. However, by inlining the function in
an enclave that performs a loop of at least 9 memory writes after the IPP
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Figure 3.6: Timing distributions of two different movs in the IPP
Cryptography library’s l9_ippsCmp_BN function (each estimated from 3000
samples). The function executes a secret dependent comparison, which can
result in two balanced paths being taken: the bigger-than or smaller-than
path. Each path contains a differently-aligned mov in it, whose distribution
is shown in the figure.

function call, we obtained the distributions shown in Figure 3.6. The figure
shows two distributions that differ in their modality. The timing distribution
of the mov in the smaller-than path has a single peak around 9400 cycles.
On the other hand, the mov in the bigger-than path exhibits two modes,
a small one around 9380 cycles and a predominant one at 9525 cycles,
and is thus usually slower to execute than the mov in the smaller-than path.
Consequently, if a measured mov timing is “slow,” it must mean that the
bigger-than path was executed (3% false positive). Overall, by using this
comparison repeatedly with a secret bitstring as input, we were able to
accurately recover 25% of the secret’s bits (with 1000 function calls).

In their response (cf. Appendix A.1), Intel specified that the
l9_ippsCmp_BN function is not used for secret-dependent computation in
their architectural enclaves. However, the IPP crypto library
documentation [63] mentions that its functions are commonly used for
cryptographic computation and has no indication that this, or any other of
its functions, is unsafe and should not be given confidential data as input.

3.5.2 Montgomery Modular Multiplication
The Montgomery modular multiplication (MM) is a fast MM algorithm
often used in cryptographic libraries due to its efficiency and minimal
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secret dependence. There is only a single secret-dependent branch in the
algorithm: a conditional subtraction that is done at the end of the
multiplication. MM is used to perform modular exponentiation, and
knowing whether the subtraction was done or not leaks some bits of a
secret key used in the exponentiation [71]. Some implementations,
including mbedTLS as of version 2.16.6, just balance the branches by
adding an else branch with a dummy subtraction in it (cf. Listing 3.1).
However, this naive mitigation is still vulnerable to side-channel attacks
that target control-flow secret dependencies, such as the Frontal attack.
We compiled the mbedTLS library with the gcc -O3 flag and used it inside
an enclave that performs a modular exponentiation (as the MM function is
not directly exposed in the library’s API). The O3 flag inlines functions
when possible, so instead of performing two function calls, as shown in
Listing 3.1, the binary contains two identical copies of the mpi_sub_hlp
function. The branch condition determines which of these two gets
executed. The mpi_sub_hlp function contains a loop with two memory
writes. The loop repeats a number of times proportional to the size of the
modulus of the multiplication. In Listing A.1 in the Appendix, we give the
assembly code generated by the compiler for the loop we exploit. Since the
two loops were aligned differently, they exhibited different timing
distributions, as shown in Figure 3.7. While the differences were not as
significant as seen in our controlled tests (most likely due to the fact that
several instructions are executed in between consecutive memory writes),
they were enough to differentiate the branches. Using Welch’s t-test, we
correctly classified 83% (511 out of 616) subtraction calls (whether they
were dummies or not) with 99.9% confidence with just 16 repetitions of
an exponentiation with the same inputs.

3.5.3 Leaking RSA Keys
We demonstrate a full end-to-end attack leveraging the Frontal attack by
exploiting the function that generates a new random RSA key pair
(mbedtls_rsa_gen_key) in mbedTLS v2.16.6. This function has several
secret-dependent branches. The one we target is executed during the
computation of gcd(e, (p− 1)(q− 1)), where e is the RSA public exponent
and p and q are two RSA primes. Leaking (p− 1)(q− 1) allows us to easily
compute the RSA private key (as together with n= pq, we can solve for p
and q and then compute d = e−1 mod λ(n)). Control-flow leakage from
the gcd implementation has been thoroughly studied [72, 73, 74], but it
only leads to partial information recovery without fine-grained execution
traces [72]. The binary gcd implemented in mbedTLS has a main loop that
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Figure 3.7: Comparison of the real subtraction (if branch) and dummy
subtraction (else branch) branches in the mbedTLS MM implementation.
The two branches are identical, and both include a for loop that executes
two memory writes (cf. Listing A.1). The graph shows the distribution of the
11th instruction in the for loop (a reg to reg subtraction), highlighting
that as long as memory writes are present, surrounding loop instructions
produce different distributions based on their alignment as well. The
distributions were estimated from 1000 function calls, each of which has 6
loop iterations, resulting in 6000 measurements per instruction.

removes the trailing zero bits to its operands and then has a balanced
branch in which a subtraction and a shift-right is performed. To recover
the RSA private key, it is sufficient to leak two pieces of information: the
output of the function that counts the number of trailing zero-bits and the
path taken in the balanced branch. We leak the trailing zero-bits by
counting the number of instructions executed in the respective function, as
demonstrated in [61, 74]. The result of the balanced branch is leaked with
the Frontal attack. Similar to the MM attack described above, the branches
need to contain inlined function calls for the attack to work. To achieve
this, we modified the signature of the int mbedtls_mpi_shift_r(...)
function in bignum.c to inline int mbedtls_mpi_shift_r(...). Note
that different compiler versions might lead to the compiler inlining this
function on its own, thus producing a vulnerable binary. With this function
inlined, the branches both contain the loop shown in Listing A.2 in the
Appendix, leading to a differently aligned memory write depending on the
branch taken. This loop within the branches is usually executed 32 times,
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giving us a fairly high number of memory writes to profile. We collect and
use the information from the distribution of each instruction in the loop in
order to recognize which branch is being executed. The overall timing
distributions are omitted here due to lack of space, but in short, some
instructions look like Figure 3.7, while others look more like Figure 3.6.
This means that we can classify the branch whenever any instruction’s
timing is in the “slow” mode of Figure 3.6 or whenever an instruction’s
timing is in the tail of the distributions of Figure 3.7. We executed 1000
runs, fixing the exponent to e = 65537 and generating a new
pseudo-random key in each run. Note that since a new key is generated on
each run, we cannot correlate the executions of multiple runs. In each
execution, the attacked branch was executed 1018 times on average
(std = 25.40), and on average we could not classify 89 (std = 92.35,
median = 55) branches. This means that, on average, we would need to
brute force 89 bits to recover the secret key. In practice, we noticed that
since the exponent is orders of magnitude smaller than (p − 1)(q − 1),
early iterations of the secret branch are very likely not taken. Leveraging
this information, we perform several guesses of the key starting from the
last unclassified iteration. We assign this iteration as ‘taken‘ and check if
this results in a correct key. If not, we assign the next iteration as taken as
well and repeat. This greedy approach worked on 65% of the runs and
allowed us to recover the key of those runs in a matter of seconds.

3.6 Affected Processors and Configurations
We tested five different processors from the 6th generation, which
introduced Intel SGX, up to the 10th, which has hardware mitigations for
recent microarchitectural attacks [75]. We give the details of the CPUs
tested in Table 3.2. For each processor, we tested the minimum microcode
version supplied by the mainboard and the most up-to-date version as of
February 2020. Each CPU was tested by computing the attack success rate
for various alignments, as done in Figure 3.3. The Frontal attack was
successful on all tested CPUs and microcodes.

Our measurements indicate that the processors can be separated into
two groups with similar behavior: processors with and without hardware
mitigations against various microarchitectural attacks. Interestingly, newer
processors with hardware mitigations built-in were more susceptible to our
attack, whereas older processors with mitigations in microcode seem to add
noise and thus have lower success rates on average. More in-depth analysis
revealed that the most recent microcodes on processors without hardware
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Table 3.2: List of all the processors we tested with their respective
microcode versions. The Mitig. column indicates whether the mitigation
against known microarchitectural attacks such as Spectre and Foreshadow
is implemented in hardware (HW) or µcode.

Processor µarch Launched µcode Mitig. Vulnerable

i7-6700HQ Skylake Q3’15 0xc2 µcode yes*

i7-6700HQ Skylake Q3’15 0xd6 µcode yes*

i7-7700 Kaby Lake Q1’17 0x48 - yes
i7-7700 Kaby Lake Q1’17 0x8e µcode yes*

i7-9700K Coffee Lake R Q4’18 0xb8 HW yes
i7-9700K Coffee Lake R Q4’18 0xca HW yes
i9-9900KS Coffee Lake R Q4’19 0xb8 HW yes
i9-9900KS Coffee Lake R Q4’19 0xca HW yes
i9-10900K Comet Lake Q2’20 0xca HW yes
Xeon E-2278G Coffee Lake R Q2’19 0xb8 HW yes
Xeon E-2278G Coffee Lake R Q2’19 0xca HW yes

*Only vulnerable in some runs (see Figure 3.8)

mitigations increase the number of cycles used for AEX and ERESUME and
add some randomness to our experiments. For these configurations, every
run of the experiment exhibits a different behavior. Figure 3.8 shows the
success rate for 500 separate runs, each with 1000 samples. Note that most
of the runs with the new microcode show a random success rate. However,
some runs exhibit a clear timing difference leading to a > 95% success rate.
The adversary can detect which behavior a particular run is going to exhibit
by observing the timings of early movs aligned at particular addresses. Thus
they could decide whether to attack or not before the secret is retrieved or
provisioned and relaunch the enclave until its behavior is clearly vulnerable.

3.7 Potential Causes
The complexity of the microarchitecture of current Intel processors makes
it very challenging to pinpoint the cause of the timing differences to a
specific component. However, we will discuss some components which
we were able to exclude decisively. We start with the memory subsystem,
then we investigate the execution engines, and finally, we will focus on the
frontend. For each potential culprit in these building blocks, we will describe
an initial theory and then try to refute or confirm it using performance
counters and other measurements. Note that the performance counters are
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Figure 3.8: Distribution of the attack success rate with different microcode
versions of an Intel Core i7-7700 CPU – across 500 runs per microcode.
For each run, we estimate the attack success rate as the percentage of
branches the attacker guessed correctly among 1000 executed branches
from Listing 3.2, with alignment X = 6, Y = 2.

sparsely distributed over the entire core and do not exhaustively cover the
entire microarchitecture. Therefore, investigating some hypotheses is very
challenging if no performance counters exist for the respective part of the
processor.

Memory Subsystem. Observations 3.1 and 3.2 point to potential causes in
the memory subsystem. Specifically, the fact that the slow mov is around
100 cycles slower. For a current-generation processor, 100 cycles is a rather
large delay that is usually only observed for accesses to external memory
or the last level cache. However, performance counters refute any theory
related to the memory subsystem since all performance counters related to
external memory or last level cache did not show a difference between the
slow and the fast movs.

Execution Engines. The execution engine gets a list of instructions from
the allocation queue as input and tries to reorder and execute them as
fast as possible. As far as we know, it is completely decoupled from the
frontend and does not depend on any alignment since it works on decoded
micro-ops. However, given Observation 2.1, we know that the alignment
influences the timing difference. We thus rule out the execution engine as
the root cause of the timing differences.
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Frontend. Observation 2.1 strongly hints at the frontend as the culprit
since the fetch window is one of the only structures which operates at a 16
Bytes granularity, matching the 16 Bytes periodicity of the observations.

The micro-op cache is a microarchitectural structure in the
frontend [76] that holds previously decoded fetch windows and serves
them to, for example, repeated jumps to the same address. On a micro-op
cache hit, many cycles can be saved due to not having to decode the
instructions again. Our observed timing difference might stem from hits
and misses in this cache. For some interrupts, the micro-op cache might
miss, and the instructions must be decoded again. Whereas, for some
others, it hits and immediately proceeds to the reorder buffer. However,
the timing difference we observed seems excessively large for this kind of
small difference in the execution path. Besides, performance counters that
measure the behavior of the micro-op cache show an equivalent number of
hits in the slow and the fast movs. Thus, we rule out the micro-op cache as
a cause.

Branch prediction is responsible for predicting the future control flow.
The core will fetch ahead and speculatively continue to execute in the
predicted path. Branches and jumps where the target is not immediately
known (e.g., the target comes from memory) both rely on the branch
predictor to guess which instruction will be executed next. Hence, the
resumption of the enclave could potentially suffer from a misprediction on
the current enclave instruction and therefore suffer from a delay. However,
all performance counters that we measured did not show any additional
mispredictions for slow or fast instructions.

Summary. While we were able to decisively refute many of the most
common reasons for timing differences, none of our tests were able to
identify with reasonable confidence an explanation for the observed
timings exploited by the attack.

3.8 Defenses
There exist various defenses against the Frontal attack, some of which
we will discuss in this section. First and foremost, we want to stress that
data-oblivious code [77, 64] is a principled approach that thwarts every
known side- or controlled-channel attack, and as such, it also remains secure
against the Frontal attack. We discuss these techniques in Appendix A.2.
Nevertheless, data-oblivious code presents several challenges in practice,
as it is hard to get right and results in high overhead in certain applications.
Therefore, in practice, many spot defenses against known attacks have been
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used since they are usually easier to apply and more performant. However,
most of these spot defenses are circumvented by new attacks such as the
Frontal attack. While the behavior exploited by the Frontal attack stems
from the underlying hardware, the simple defense we discuss is at the
software level. Hardware mitigations would also be possible, but due to
the lengthy turn-around time for new processors, software defenses are
more attractive.

As seen in Section 3.4, the execution time of individual instructions
depends on their alignment. Particularly, branches with identical alignment
do not exhibit any observable timing difference. Therefore, aligning the
two branches to the same address (modulo 16) leads to indistinguishable
timing distributions for both branches. We evaluated the overhead in
terms of binary size and performance of this approach on three common
libraries: libc, OpenSSL, and mbedTLS. We used GCC v7.5.0 with the
compile flag -falign-jumps=16 – this flag aligns all branch targets to
0x10, thwarting our attack. The highest size overhead (3.73%) was on
one of the binaries generated for libc; this, however, was the only outlier,
as all the other binaries had an overhead of less than 0.5%. For
comparison, compiling with -03 added on average 14% compared to -02.
To evaluate performance, we use libc-bench7 for libc and the benchmarks
that come with the libraries for mbedTLS and OpenSSL. The strstr test
in libc-bench had the highest overhead at 30%, and libc overall had an
average overhead of 1%. Depending on the evaluated cryptographic
function, mbedTLS had overheads ranging from 4% to -5.5%, while
OpenSSL from 3% to -4%, showing that for some cryptographic functions’
implementation, the defense even provides performance boosts.

3.9 Related Work
We compare our attack and related ones in Table 3.3. In short, the main
differences lie in the type of branches that are vulnerable to the various
attacks. Previous defenses build either on the fact that controlled channel
attacks cannot leak at sub-page granularity or that BPU attacks cannot
leak the target virtual address of unconditional branches. In general, these
defenses are ineffective against our attack since we exploit a fundamentally
different mechanism. In the following, we describe the differences between
the Frontal attack and other related attacks in more detail.

7https://www.etalabs.net/libc-bench.html
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3.9.1 Controlled-Channel Attacks
The attacker’s control over the OS enables novel noise-free deterministic
side channels [17, 18, 19] known as controlled channels since the attacker
controls the channel. Memory paging, the scheduler, and the handling of
interrupts and exceptions, are a few examples of what the attacker can
take advantage of – every interface between the OS and the enclaves can
be leveraged in controlled channel attacks. In [17], Xu et al. modify page
permissions so that the CPU generates a page fault for each page the enclave
tries to access. The trace of page faults contains enough information to,
e.g., let attackers reconstruct images processed in the enclave. Subsequent
attacks made controlled-channel attacks stealthier by observing that the
CPU sets the accessed and dirty bits [19, 18] in the page tables (PTs), thus
allowing to monitor the enclave’s execution without having to trigger page
faults. However, the resolution of page-based controlled channel attacks is
quite coarse, allowing the attacker only to know whether any access in a
page (4 kB) was made but not where within it.

The coarseness of PT-based controlled-channel attacks is an element
that defenses have latched onto to protect enclaves [85, 86]. These defenses
either call for sensitive code to be within a page [85] or randomize the
enclave’s page layout so that page accesses cannot be correlated [86]. Even
Intel specifies that controlled channels can be mitigated “by aligning specific
code and data blocks to exist entirely within a single page” [56]. However,
the resolution of controlled-channel attacks was increased through an attack
exploiting legacy memory segmentation [84], which is also managed by the
OS. While the attack only works under uncommon circumstances (32-bit
enclaves and smaller than 1 MiB), it can observe memory accesses at 1-byte
granularity.

Our attack can trace the control flow of an enclave with instruction
granularity, thus increasing the resolution of PT-based controlled-channel
attacks. Like other controlled-channel attacks [59, 61], the Frontal attack
relies on interrupts to observe instructions and control flow within a page.
However, it differs from them in the kind of branches that it can exploit.
Nemesis [59] can distinguish between branches that have instructions with
measurable timing differences, either because they have different kinds
of instructions in their paths or because they have a different number of
instructions. CopyCat [61] can track the control flow in branches with a
different number of instructions. The Frontal attack allows differentiating
any branch, even if both paths contain the very same instructions and
are hence not vulnerable to other controlled channel attacks. The only
requirement for our attack is that the branch contains at least a memory
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store in it. Such higher resolution hence defeats previous defenses that rely
on controlled channels being limited to observe only at a page resolution.

3.9.2 Microarchitectural Side-channel Attacks
Microarchitectural attacks exploit information leakage due to shared
microarchitectural resources across different privilege domains. Among
these shared resources, the ones that have been exploited the most are the
cache and the branch prediction unit (BPU). We examine side-channel
attacks based on these and other shared microarchitectural components
below.

BPU Attacks. The BPU records the outcome of recent branches and jumps to
aid the CPU speculation. As it is shared among different execution contexts
running in the same core, it can leak information about the control flow
of another context. The BPU was the focus of recent attacks, particularly
against SGX [16, 57, 58]. BPU attacks require either SMT [58] or time
multiplexing at a fine granularity between the victim and the attacker in
the same physical CPU core [58, 57, 16]. These attacks are, in general,
very sophisticated and require reverse-engineering of the BPU. Given how
hard this is to achieve, BPU attacks are not easy to generalize to different
microarchitectures and to pull off in practice [87]. These attacks are also
limited to the type of branches they can exploit. For instance, they cannot
leak the target virtual address of indirect jumps [16]. As these attacks give
fine-grained information to the attacker, there have been a few defenses
proposed against them [16, 58, 60]. Most notably, some defenses call for
a holistic approach by flushing the BPU across context switches [16, 58].
Other defenses propose spot defenses, such as replacing every branch with
indirect jumps [60]. BPU attacks are particularly related to the Frontal
attack, as they both exploit secret-dependent branches. However, as the
Frontal attack exploits a fundamentally different mechanism, any spot
defense against BPU attacks is not effective against our attack.

Attacks on Caches and Other Shared Resources. Because caches are a
resource shared across different execution contexts, an attacker thread can
infer which accesses a victim recently made in another context by obtaining
information about the cache state. While cache attacks often exploit timing
variations in access latency to probe the state of the cache [88], state
changes can also be detected by using instructions’ side effects [89, 90].
Cache attacks target different levels of the cache hierarchy – from core-local
data cache [91, 92, 93, 94, 95, 15, 52, 78, 53] and core-local instruction
cache [91, 94] to the last level cache (LLC) which is shared amongst all
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cores [96, 97, 98]. As code and data are shared in the upper levels of
the cache (from L2), attacks that exploit them can leak both control-flow-
dependent and data-dependent secrets [96, 97, 98]. Attacks on core-local
caches require to be co-located with the victim and thus usually rely on
simultaneous multithreading (SMT) or on accurate time-multiplexing. On
the other hand, attacks that exploit the LLC can be run at the same time as
the victim in another core.

The TLB is a shared buffer that stores the translation information from
virtual addresses (VA) to physical addresses. It can be exploited to detect
whether a victim recently accessed a data memory page [79, 18]. Since the
TLB is shared only among processes in the same core, it has been exploited
only using SMT so far. It can leak data accesses at a 4 kB granularity.
CacheBleed [80] was the first attack to demonstrate intra-CL leakage for
data accesses, achieving a resolution of 8B. It exploited cache bank
conflicts and write-after-read false dependencies. Since the adversary is
not in the same address space, they induce a false memory dependency by
making use of 4k page aliasing – where an address x is considered the
same as x + 4096 by the hazard detection in the processor. Cache banks
are only present in older Intel architectures and, therefore, cannot be
exploited on newer CPUs. Moghimi et al. [81] ported the CacheBleed
attack to newer CPUs and SGX while improving the resolution to 4B in
their MemJam attack. They exploit read-after-write false dependencies in
the processor memory subsystem using 4k aliasing. The PortSmash [82]
attack extended the resolution available to the attacker even further by
being able to detect issued microops in SGX enclaves. It works by keeping
specific CPU execution ports busy and monitoring their execution latency.
Execution in these ports becomes slower when another context is using
them, thus leaking information about their control flow to the attacker.

3.10 Conclusions
In this chapter, we observed a dependency between instructions’ execution
time and their alignment modulo 16. We attributed these differences to the
CPU frontend and its fetch and pre-decode module. We leveraged these time
dependencies to construct the Frontal attack, which can leak the instruction
pointer of an SGX enclave at the byte-level granularity. The Frontal attack
works against any kind of branch as long as it contains at least a memory
write. It can attack perfectly balanced branches, even when they fit within
one cacheline. We showed that the Frontal attack achieves a success rate
of more than 99%, depending on the target victim code. We tested every
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modern CPU microarchitecture that currently supports SGX (up to 10th gen)
and found them all to be vulnerable to our attack. We demonstrated the
practicality of our attack by exploiting two commonly used cryptographic
libraries, mbedTLS and the Intel IPP Cryptography library. We discussed
relevant defenses to the attack, such as aligning all branch targets to the
same offset modulo 16. While we show that this defense has tiny size
and performance overheads, we stress that, in general, secret-depending
branching should be avoided to guarantee confidentially in SGX enclaves.





Chapter 4

Code Confidentiality in TEEs

4.1 Introduction
The trend of outsourcing data storage and computation has given rise to
concerns about the confidentiality of not only data but also of code that is
running on remote (typically cloud) services. To address these broad
concerns, confidential computing, based on Trusted Execution
Environments (TEEs) such as Intel SGX [10] and AMD SEV [42], has been
deployed in today’s commercial cloud [99, 100, 101].

TEEs allow the client to deliver their confidential code and data into a
protected CPU enclave, which then isolates it from the OS and hypervisor
that are running on the same machine and, more generally, from the
untrusted Service Provider (SP). This is typically achieved via attestation –
the client first sends the public part of its code to the SP (e.g., a VM),
attests that this code is running within an enclave, establishes a secure
channel (typically TLS) to the enclave, and then uses the secure channel to
deliver confidential code and data into the enclave. Once the confidential
code is delivered to the enclave, it can be executed in isolation. Recent
years have seen an emergence of several designs that generally follow this
approach, use different TEEs, and offer various trade-offs, both as
academic proposals [26, 27, 28, 29, 30, 31, 32, 33] and commercial
solutions [22, 23, 24, 25].

One of the core ways in which these solutions diverge is the format in
which the confidential code is delivered to the enclave. They typically follow
one of two approaches: native execution and IR execution, where IR stands for
Intermediate Representation. We illustrate these approaches in Figure 4.1.
In native execution, the developer compiles the confidential code to a native
binary (i.e., x86) and then, after initializing a remote enclave, sends the
binary to it. In IR execution, the developer compiles the confidential code
to bytecode (e.g., WASM or Java) or directly sends the source code to the
enclave. Whereas in the case of native execution, the enclave can simply
copy the instructions from the received binary to memory and execute
them, in the case of IR execution, it needs first to convert the received IR
into native code. This is done by a Virtual Machine (VM)-like environment
in which either a just-in-time (JIT) compiler first converts the IR code to
native or an interpreter directly executes it. A number of academic and
commercial systems now support either native or IR execution within TEEs.
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Figure 4.1: The two main approaches providing code confidentiality with
TEEs: native execution (above the dashed line) and IR execution (below
the dashed line).

WASM runtimes are particularly well supported [22, 23, 24, 30, 32] because
WASM requires a small runtime resulting in a small TCB. Moreover, more
than 40 programming languages can currently be compiled to WASM, with
support for more underway [102].

However, even if several [26, 27, 28, 29, 31, 33, 22, 23, 25] of these
systems claim to support code confidentiality for native or IR execution, so
far, these claims have not been evaluated in the open literature.

This Chapter. We perform the first analysis of confidential code leakage in
native and IR execution of modern TEEs. In particular, we evaluate code
leakage on native execution from Intel SGX and AMD SEV TEEs (x86 ISA)
and IR execution with WASM runtimes. In our evaluation, we single-step
the enclaves by controlling interrupts and recording various side-channel
measurements for each instruction. This allows building a trace of the
execution of the victim enclave at the instruction granularity in an attempt
to identify individual IR instructions or instruction sequences.

Our results show that native execution is largely robust to even the
most sophisticated side-channel attacks and leaks limited information
about individual instructions. IR execution, which we tested on
WAMR [103], a lightweight WASM interpreter developed by the Bytecode
Alliance, however, has shown to be highly vulnerable to our side-channel
analysis. We successfully leaked more than 45% of the secret instructions
with 100% confidence from a synthetic C program running various math



4.2 System and Attacker Model 77

and cryptographic functions and from a chess engine written in Rust [104].
Collectively, we successfully extracted over 1 billion WASM instructions
from both code sets, albeit not all with 100% confidence. This is possible
because we are able to leak around 80% of the instructions in the WASM
instruction set architecture (ISA) with 100% confidence. This level of
confidence is obtained from just one run of the victim enclave.

These results are consistent with the expected side-channel leakage.
Each IR instruction is represented by several native instructions. To identify
an IR instruction, the attacker can therefore rely on a much longer side
channel trace than when it tries to identify an individual native instruction.
Therefore, it is clear that IR execution is generally more vulnerable to
code leakage than native execution. Our results show that in the case of
IR execution, such leakage is also practical, which raises questions about
the security guarantees of any IR execution in TEEs.

Contributions. We summarize our contributions as follows:

• To our knowledge, this is the first study to investigate and bring forth
the challenges in providing code confidentiality in TEEs.

• We generalize system designs aiming to provide code confidentiality
in TEEs into two, native execution and IR execution, and develop a
methodology to quantify and compare their code leakage.

• We analyze instruction leakage in both systems on various
microarchitectures supporting TEEs from Intel and AMD. Our
evaluation reveals that native execution leaks significantly less than
IR execution. We also show that IR execution greatly amplifies any
leakage from native execution and allows us to extract most of the
confidential instructions from a single execution.

• To demonstrate the practicality of these findings in IR execution, we
develop a practical end-to-end instruction extraction attack against
WAMR, a WASM runtime running on Intel SGX. We responsibly
disclosed the findings to the affected vendors (cf.Appendix B.1).

4.2 System and Attacker Model
We consider a setting in which computation is outsourced while needing to
safeguard the confidentiality of the code used for computation. Two main
parties are involved in this setting:
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• A Confidential Algorithm Owner (CAO) that wants to offload
computation to the cloud while keeping their code confidential; and

• A Service Provider (SP) that provides support for Trusted Execution
Environments (TEEs).

While the SP TEEs provide memory confidentiality at runtime, the CAO
cannot simply create an enclave (a TEE instance) containing the confidential
code, ship it to the SP, and expect it to remain confidential: on both Intel
SGX and AMD SEV, the initial state of the enclave is visible by the untrusted
operating system (OS) and/or the hypervisor. Academic [26, 27, 28, 29, 30,
31, 32, 33] and industrial [22, 23, 24, 25] solutions address this problem
by supplying the confidential code to the enclave only after the enclave has
been initialized and attested. The confidential part of the code is, therefore,
only communicated to the enclave after the attestation and the creation of
the secure channel between the CAO and the enclave.

Typically, two main approaches are employed to supply and execute
confidential code in an enclave: native execution and IR execution. Each can
be further broken down into three stages: (i) compile, (ii) attest, and (iii)
deploy and execute.

(i) Compile. In this stage, the CAO compiles its confidential source code
for the TEE. Native execution approaches [26, 27, 28, 29, 25, 24, 33]
require the CAO to compile to a native format (we focus on x86 object
binaries). In IR execution [22, 23, 25, 24, 30, 31, 32], code gets compiled
to an intermediate representation (IR) chosen as a compilation target, e.g.,
WebAssembly (WASM) bytecode, Javascript, Python, or Go. In some of the
systems, the compilation step is skipped as the TEE directly interprets the
source code.

(ii) Attest. In this stage, the CAO deploys an initial, non-confidential code
with the SP and attests that this code is initialized in the enclave. Attestation
ensures that the initial enclave has been deployed in a legitimate TEE and
that its integrity is guaranteed. This initial enclave code is often provided
by the chosen framework or SP [25, 22, 24]. As part of attestation, the CAO
bootstraps a secure channel (e.g., TLS) with the enclave. On this secure
channel, the CAO sends either the confidential code to the enclave or a
key to decrypt a confidential code image already contained in the initial
enclave.

(iii) Deploy and Execute. After the attestation, the CAO instructs the
initial enclave to execute the confidential code. In native execution, this
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is straightforward – the enclave simply jumps to the entry point of the
x86 confidential code, which was stored in its memory as a result of the
previous stage. In IR execution, the initial enclave contains an interpreter
(e.g., WASM or Python), potentially with a just-in-time (JIT) compiler; the
confidential instructions get interpreted, and, if a JIT compiler is available,
some parts get compiled to native (x86) to speed up the execution.

4.2.1 Attacker Model
The goal of the attacker is to leak the instructions and, therefore, the
confidential code that is executing in the TEE. Here we assume that the
attacker is either the Service Provider (SP) or has privileged access to the
server in which the confidential code is executing, i.e., the attacker controls
the supervisor software, that is, the hypervisor (on a system with AMD SEV)
and/or the operating system (for Intel SGX). This is a standard attacker
model for TEEs [43, 11]. The attacker can see the non-confidential, initial
enclave code as this code is provided in cleartext to the OS and hypervisor to
load the enclave; typically, this code is public. We assume that the attacker
has no control over when the confidential algorithm is executed and which
secret inputs are given to it. This assumption impacts the side channels
available to the attacker, as for instance, in this setting, it is difficult to i)
restart an enclave a large number of times to average out noise, and ii)
correlate the instructions across multiple runs – as different code paths
might be executed depending on the supplied inputs.

Since the attacker has control over supervisor software on the system,
they are able to: manipulate interrupts, observe changes to paging
management structures (such as page table entries), and other
information available to the OS, such as the last branch record (LBR).
These capabilities1 allow the attacker to single-step the TEE execution
(through interrupts), see whether memory read and writes are executed
(through the page tables), the approximate location (down to the
cacheline) of memory read and writes, which code-page is being executed,
whether some types of jumps were executed, and the execution time of
interrupted instructions. We refer to an attacker with these capabilities as
the state-of-the-art (SotA) attacker.

Throughout the chapter, unless otherwise specified, we employ a SotA
attacker. However, when necessary to establish upper bounds on code
leakage, we use a stronger attacker model, which we refer to as the ideal

1As demonstrated in the literature against SGX [67, 59, 19, 18, 16, 61], they apply to AMD
SEV as well, as discussed in Section 4.9.
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Malicious OS / HypervisorMalicious OS / Hypervisor

Enclave (SGX / AMD SEV)
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WASM Bytecode
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Enclave (SGX / AMD SEV)
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Sent to
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Figure 4.2: The two approaches to code confidentiality in TEEs. The
native execution enclave (left) gets the source code compiled to x86; the
IR execution enclave (right) gets as input WASM bytecode. Both systems
operate in an environment with a malicious OS and are tasked with
executing the same source code.

attacker. As the ideal attacker is specific to the system for which we want
to estimate an upper bound, we will only introduce it when needed in the
following sections.

4.3 Leakage Analysis Overview
To compare the leakage in native and IR execution, we instantiate them in
two systems, the native system and the WASM system, illustrated in
Figure 4.2. The native system accepts and executes confidential instructions
in x86 (native) binary format. The WASM system implements IR execution
by accepting as input WASM bytecode instructions. The WASM system
enclave can then either interpret the bytecode or process it with a JIT
compiler before execution. We refer, in general, to interpreters and JIT
compilers as translators. We choose WebAssembly (WASM) to evaluate
intermediate representation (IR) leakage due to its widespread adoption,
ample language support (more than 40 languages can be compiled to
WASM bytecode [102]), and the existence of multiple stable and
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x86 imul IM

x86 movswq IM

x86 jmpq IM

x86 imul IM

x86
imul

WASM
i32.mul

Figure 4.3: Sample trace collection during the execution of an x86 imul
and one of its WASM equivalents, i32.mul. The x86 instruction generates a
single Instruction Measurement (IM), while the WASM instruction generates
9 IMs due to executing 9 underlying x86 instructions.

lightweight runtimes. Further, it can easily be compiled into native code,
making the comparison between the two systems easier and more rigorous.
The enclaves in the two systems get the instructions in different formats
from the same source program. We compile the source code to WASM
bytecode and then the bytecode to x86 outside the enclave (cf. Figure 4.2).
The native system is given the final x86 binary, while the WASM system is
given the intermediate WASM bytecode. Thus, the two systems are tasked
with executing the very same program, allowing us to attribute any
possible differences in leakage to the system running the instructions.

There are two fundamental differences between the native system and
WASM system that influence their susceptibility to side channels: (i)
translators often execute more low-level instructions than equivalent
native binaries, and (ii) the instruction set architectures (ISAs) of native
instructions are usually considerably bigger than the ISAs used for
interpreted languages. Combining these two observations, our hypothesis
is that the WASM system is potentially leakier than the native system due
to having longer (and thus more unique) patterns of execution traces and
having fewer possible instructions in the ISA that generate these traces. In
the following, we expand on these differences.

Number of Executed Native Instructions. Translators of high-level
languages with powerful semantics execute multiple native instructions for
each high-level instruction. These translators thus amplify the amount of
information an attacker can collect during the execution of interpreted
code, compared to attacking a native system. For example, Figure 4.3
shows the difference in collected traces by an attacker when profiling one
x86 instruction versus one of its equivalents in a WASM interpreter.
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All translators, from high-performance JIT-based to interpreters, must
perform two steps to execute a binary: first, they have to parse the code and,
second, execute it. Parsing usually involves looping over each instruction
of the input code, decoding it, and preparing it for execution (e.g., with
a switch-case statement, as shown in Listing 4.1). As the underlying
architecture does not provide single complex instructions to perform these
operations, multiple native instructions are executed while parsing a single
WASM instruction. Not only this but since different WASM instructions
require different actions by the parser, the amplified instructions will differ
based on which WASM instruction is being parsed. Effectively, this creates an
exploitable control-flow dependency. Similar issues arise during execution.
For instance, the WASM add instruction adds the last two values from the
WASM stack and then writes the result back to the stack. An interpreter
needs first to read these values and then write the result back, generally
using multiple native instructions for this task. In contrast, on x86, it is
possible to perform all these operations with a single add. In summary, the
WASM system enclave executes several (and different) x86 instructions for
each WASM instruction both during parsing and execution.

While Listing 4.1 shows the implementation of the loader for the
WAMR interpreter [103], other WASM projects we inspected
(Wasmtime [105] and Wasmer [106]) have similar implementations. In
fact, we remark that the amplification described above with the related
control-flow dependency on input instructions is likely to be found in any
interpreter or compiler available today. However, different
implementations will exhibit different amplification factors, as, compared
to each other, they might employ a different number of x86 instructions to
parse and emulate high-level instructions. This aspect is crucial as it affects
the exploitability of the high-level instructions.

Difference in ISAs. The WASM Instruction Set Architecture (ISA) is
significantly smaller than the x86 ISA (between ≈6x and ≈14x, depending
on the x86 microarchitecture). Since the attacker knows that the enclave
accepts only valid instructions, the attacker has fewer instructions to guess
from in the WASM system than in the native system. To give a concrete
example of why this helps the attacker, consider the add instruction in x86
and WASM. In the WASM case, it can only add the two most recent values
in the stack, while in x86, many variations are possible, e.g., adding from
different locations in memory, from registers, or even vectors. Assuming an
attacker that can only leak the opcode (i.e., an add), this reveals more
information in the WASM system than in the native system.
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1 static bool
2 wasm_loader_prepare_bytecode(...) {
3 ...
4 while (p < p_end) {
5 opcode = *p++;
6 emit_label(opcode);
7

8 switch (opcode) {
9 ...

10 case WASM_OP_NOP:
11 skip_label();
12 break;
13

14 case WASM_OP_IF:
15 PRESERVE_LOCAL_FOR_BLOCK();
16 POP_I32();
17 ...

Listing 4.1: Excerpt of the main loop of the Bytecode alliance WAMR
interpreter [103] (commit b554a9d) responsible for loading a WASM
binary. opcode (line 5) is the opcode of the current WASM instruction
being parsed. This listing shows how a control-flow dependency on the
opcode usually manifests (line 8) in WASM interpreters and compilers,
and how different instructions exhibit different amplification factors.
For instance, WASM_OP_IF (line 14) requires multiple operations to be
translated, amplifying the information available to the attacker compared
to the equivalent functionality in x86 (usually a single instruction).

4.4 Methodology
In our study, we single-step the enclave to collect information about

each executed native instruction. We refer to the information collected for
each native instruction as instruction measurement (IM). Given the side
channels available in our attacker model, each IM contains the following
information about an executed instruction: the execution time, the set of
accessed code pages, the set of accessed data pages, and for each of the
data pages, whether the access was a memory read or write. A series of
IMs forms an execution trace containing all the information available to the
attacker. Note that the trace contains as many IMs as the x86 instructions
measured. Thus, in the native system, there is one IM per confidential x86
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instruction that the attacker wants to leak. On the other hand, in the WASM
system, multiple IMs are collected for each confidential WASM instruction.
Finally, we can only measure instructions if they are executed; hence the
execution trace only contains IMs related to the executed branches and no
information about non-executed code paths.

Features. It is worth noting that not all the information in an IM can be
directly used to infer which instruction was executed. This is due to two
reasons: first, the measurement might be too noisy, and second, it might be
only related to an instruction’s inputs and not to its operand. For instance,
the side channel used to measure the execution time is subject to noise,
and it is, therefore, generally hard to discriminate instructions based on
this measurement: a memory read (mov) and an addition from memory
(add) are two very different instructions (in terms of a program’s logic)
that produce similar timing distributions [107]. Thus, based on the timing
information alone, an attacker would not be able to distinguish between
the two. With respect to the second reason, knowing the data page that was
accessed does not generally contain any information about the instruction
type – the relevant piece of information about the instruction is that a
memory access was made, not where it was made. On the other hand,
knowing whether the stack was accessed does reveal information about
the executed instruction type because some instructions only operate on
the stack and not on other segments of memory.

Therefore, instead of using the raw numbers contained in IMs, we
collect four features: the execution latency (with a resolution of 10 cycles),
the type of memory access (read/write or no access), whether the
instruction accessed the stack (yes or no), and whether the instruction
modified the control-flow (yes or no). We arbitrarily choose a 10-cycle
resolution for the attacker to over-approximate the best current attacker
capabilities. To the best of our knowledge, even the most advanced attacks
that leverage instruction timings show significant noise and are not even
close to a resolution of 10 cycles for current TEEs [108, 59]. More details
on related attacks can be found in Section 4.8. Note also that the IM does
not include cache access information, despite being within the capabilities
of a SotA today. We decided to exclude this information from the IM
because the relevant features from this measurement (whether memory
was accessed) can already be inferred from the page monitoring controlled
channel, which is easier to measure and deterministic. This highlights the
difference between recovering instructions compared to data: for data
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inference, precise memory accesses are important, while for instruction
inference, we need to extract metadata about the instruction.

Candidate Sets. To be able to quantitatively compare code leakage, we
introduce the notion of candidate sets. The attacker forms a candidate set
for each instruction they are trying to recover. Let us assume that from the
IM, the attacker can deduce that the underlying confidential x86 instruction
made a memory read from the stack, e.g., because the IM contains a memory
read from a page assigned to the application’s stack. Then the candidate set
for that IM will contain instructions such as pop, mov, and add, as they can
all read from the stack. On the other hand, it will not contain a push, as this
instruction always writes to the stack. More formally, an instruction belongs
to the candidate set of an IM if and only if there exists a version of that
instruction that would produce a set of observations that is exactly the IM.
The candidate set is useful in that it tells us that the instruction underlying
an IM can only be among the ones contained in that IM candidate set.
Therefore, if the set only contains one instruction, then the attacker has
recovered a target instruction. In general, we can say that the smaller the
candidate sets, the more information the attacker collected (i.e., the lower
the entropy). The candidate set allows us to compare the leakage in the two
systems in the sense that if one system tends to produce smaller candidate
sets than the other, then we can say that it is leakier – and by how much.
The ISA used in the target system (x86 or WASM) helps to form an initial
candidate set. Since the target system can only execute valid instructions,
the candidate set of an instruction with an “empty” IM contains all of the
instructions of the system’s ISA.

Finally, unless otherwise specified, we only report numbers for
semantically different instructions in the candidate sets. We define semantic
equivalent instructions as instructions that perform the same task but
differ only in the input operand size or type (e.g., signed or unsigned). For
instance, in WASM, i32.add is equivalent to i64.add, while in x86, movq
is equivalent to mov. Semantically different instructions are then
instructions that are not semantically equivalent. We perform this
simplification because we note that generally if a candidate set contains
only semantically equivalent instructions, it can be misleading to report a
higher number of instructions in it.

4.5 Leakage Analysis
We now explain how to leverage IMs to build candidate sets for

instructions in the native and WASM systems, and use such candidate sets
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1 ...
2 .loop:
3 mov -4(%rbp), %ecx # %ecx = z
4 imul %eax, %ecx # %ecx = z * x
5 mov %ecx, -4(%rbp) # z = %ecx
6 inc %eax # x += 1
7 cmp -8(%rbp), %eax # x < y?
8 jl .loop # loop if true
9 .out:

10 ...

Listing 4.2: A simple assembly program with a loop that, on each iteration,
computes z = z ∗ x . The loop iterates y times. The variable x is stored on
%eax, y on -8(%rbp), and z on %ecx.

to measure how much of the confidential code leaks. For both systems, we
proceed as follows:

• First, we analyze a simple program: a small loop where each iteration
computes the multiplicative product of two numbers, as shown in
Listing 4.2. It is composed of 6 assembly instructions, where the two
numbers are multiplied in line 4. We compile this program to x86 for
the native system and to WASM for the WASM system.

• Second, we discuss the IMs obtained from its execution and analyze
the candidate set sizes for each instruction.

• Finally, we estimate the leakage of the system by computing candidate
set sizes for all instructions in its ISA.

In the following, we first analyze the baseline native system. We start
our analysis with the SotA attacker with practical capabilities (e.g., timing
resolution of 10 cycles). We then expand the attacker capabilities to account
for future attacks with single-cycle accuracy, functional units occupied over
time, and more. We use such an unrealistically strong attacker to determine
an upper bound to leakage in the native system (Section 4.5.2). Finally, we
analyze the WASM system under the SotA attacker (Section 4.5.3).

4.5.1 Leakage in the Native System
We compiled the sample binary from WASM bytecode to x86 and profiled
its execution to gather its IMs: Table 4.1 shows the collected features when
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Table 4.1: View of the attacker for the asm in Listing 4.2; y = 2. Candidate
sets contain only semantically different instructions. Collected in the
Skylake microarchitecture.

Instruction Cycles Memory Stack Access Is CF? Candidate set size

mov 0− 10 R ✓ ✗ 545
imul 0− 10 - ✗ ✗ 581
mov 0− 10 W ✓ ✗ 86
inc 0− 10 - ✗ ✗ 581
cmp 0− 10 R ✓ ✗ 545
jmp 0− 10 - ✗ ✓ 23
mov 0− 10 R ✓ ✗ 545
imul 0− 10 - ✗ ✗ 581
mov 0− 10 W ✓ ✗ 86
inc 0− 10 - ✗ ✗ 581
cmp 0− 10 R ✓ ✗ 545
jmp 0− 10 - ✗ ✓ 23

the loop is executed twice, and the number of candidate instructions on
Skylake CPUs. We observe that, despite combining the information from
several side channels, the attacker rarely gets a candidate set with fewer
than 100 instructions.

In fact, this is not the case just in the example binary of Listing 4.2,
but it is a consequence of the classes of instructions that can be built with
the employed side channels. As there are fewer classes than there are
instructions, some instructions are bound to belong to the same candidate
set, thus making them indistinguishable from each other.

Full ISA. We now turn to the entire native system ISA: by computing all
possible candidate sets, we can check how many instructions of the ISA
have a candidate set size below a certain threshold, with the idea that the
smaller the overall candidate set sizes are, the leakier a system is. Observe
that each IM maps to exactly one class, and the instructions in that class
form the candidate set for that IM. This means that all the possible classes
are exactly all the possible candidate sets that can be observed for a system.

However, to estimate which instructions are in which class, we would
need to collect an IM for all instructions (and their variations) in the x86
ISA available in SGX and SEV. Further, we would also have to do this
for different microarchitectures, as these support different extensions of
the x86 ISA and thus change the set of available instructions. Instead
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Figure 4.4: Instruction candidate set size distribution of semantically
different SGX and SEV instructions for various 64-bit x86 microarchitectures
under the SotA attacker. The plot shows the minimum candidate set size
that contains at least x percent of the ISA available in the TEE (SEV for
AMD and SGX for Intel). This assumes the best resolution available to the
SotA attacker with respect to execution time is 10 cycles. The dotted red
line is set at y = 10, and it indicates that > 90% of the ISA instructions
have a candidate set size greater than 10.

of generating programs to execute all possible instructions on different
microarchitectures, we adapted and reused the results of a dataset collected
as part of an x86 benchmarking suite for the x86 ISA [107]. Particularly, we
inferred from the dataset to which class among the ones introduced above
every instruction belongs. The dataset had to be adapted to account for the
fact that some instructions are illegal in SGX or that others are intercepted
by the hypervisor on SEV. We describe these caveats in Appendix B.2.

We report the cumulative distribution of the sizes of the candidate sets
in Figure 4.4. What can be observed from the figure is that around 80%
of the instructions of the ISA belong to a candidate set containing more
than 100 instructions. Note that for SEV, 1.48% of the instructions in the
ISA belong to a candidate set of size 1 and can therefore be leaked to
the attacker. This is due to the fact that in SEV, some instructions, such as
CPUID, are intercepted by the hypervisor and are therefore leaked to the
attacker (not through side channels, but through a system interface). There
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Figure 4.5: Instruction candidate set size distribution of semantically
different SGX and SEV instructions for various 64-bit x86 microarchitectures
under the ideal attacker. The dotted green line is set at y = 1, and given
where it intersects the various microarchitectures’ ISA, it indicates that
more than 90% of the instructions cannot be recovered even by the ideal
attacker.

are a few other instructions with a candidate set size of < 10, but they are
limited to less than 8% for all analyzed microarchitectures. Thus the SotA
attacker is practically never able to resolve any instruction of the x86 ISA
based on the evaluated side-channels information alone.

4.5.2 Ideal Attacker
For the native system, we also explore different strengths of attacker models,
for instance, showing how the candidate set sizes change based on different
levels of cycle accuracy available to the attacker. We present these results
in Appendix B.3 and discuss in Section 4.8 how these resolutions map to
known attacks. Here instead, we study what we believe to be the extreme in
terms of attacker strength, which we refer to as the ideal attacker. The ideal
attacker has the capability of benchmarking instructions – like done in [107].
Note that [107] is a general method to benchmark instructions outside
the enclave and hence uses capabilities currently blocked by SGX and SEV,
such as reading performance counters and injecting instructions around
target instructions. These capabilities also allow the attacker to observe the
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utilization of individual functional units and obtain cycle-accurate execution
time for each instruction. We assume that the other security properties of
SGX and SEV otherwise hold, e.g., the ideal attacker cannot read the enclave
memory. To the best of our knowledge, the data on single instructions
collected in [107] is the most detailed and comprehensive dataset about
the performance of current x86 processors to date. Since current attacks
do not even get close to the resolution and wealth of information available
in [107], the ideal attacker is currently far from realistic. Nonetheless, we
see value in this second attacker model as it allows us to reason about a
leakage model against a theoretically stronger attacker and to establish an
upper bound of leakage that can be achieved.

To build the candidate sets for the ideal attacker, we construct the IM
using the data in [107] as follows: cycle-accurate execution time, functional
units (FUs) occupied over time, the code address accessed, the data address
accessed (if any), and the type of data access (read or write). Regarding
the FUs, for each instruction, we let the attacker perfectly see the order in
which they are used and which other FUs could be used by the instruction.
Using these very detailed IMs, we create the candidate sets by grouping
together all x86 instructions for which the information in the IM is exactly
the same2. Finally, we remove duplicate entries that are semantically similar,
e.g., mov and movq. The resulting cumulative distribution of the candidate
set sizes is depicted in Figure 4.5.

While the resulting candidate set sizes are significantly smaller than for
the SotA attacker, around 50% of the ISA still belongs to a candidate set of
at least size 10 for all analyzed microarchitectures. On the other hand, up
to 10% of instructions are uniquely identifiable with a candidate set of size
1 on both SGX and SEV. Based on these results, the ideal attacker might be
able to extract some instructions, but the majority of the ISA still remains
ambiguous and cannot easily be leaked. Therefore, even an unrealistically
strong adversary is not able to reconstruct most confidential x86 instructions
from the IMs side channels. Note that this ideal attacker we considered does
not have any prior information about the binary executing in the enclave.
An attacker with more prior information might be able to extract more
instructions even in the native execution scenario. Prior information might
include information about the distributions of compiler-emitted instructions
or even the distribution of instructions about key code segments (such as

2Exclude code and data addresses as these only contain information related to the input
data and not the confidential instruction.
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function epilogs). At present, the weight that prior information plays in
this leakage has not been evaluated, and we leave this to future work.

4.5.3 Leakage in the WASM System
We again first consider the loop of Listing 4.2, compiled to WASM. However,
while in the native system the binary only gets executed, we note that WASM
translators (AOT, JIT, and pure interpreters) generally have two phases:
loading and interpretation. During loading, the WASM binary is parsed, and
each instruction is decoded into some internal and implementation-specific
format. The second phase encompasses the execution of the loaded WASM
binary.

We choose to analyze the WAMR [103] interpreter because it combines
aspects of both a JIT compiler and a pure interpreter. During the loading
phase, WAMR parses the WASM instructions and eliminates instructions
whose results can be statically determined. For instance, the loader
optimizes away instructions that load constant parameters by pre-placing
their constants into the WASM stack before execution. This optimization
speeds up the interpreter, as only a subset of instructions needs to be
executed later. This pre-processing of instructions makes the loading phase
of WAMR akin to a JIT compiler. Multiple native x86 instructions are
executed for each WASM instruction during both phases. Thus, each
WASM instruction of the loop of the sample program lets us collect
multiple IMs: we report them in Table 4.2. In WASM, the loop is composed
of 20 instructions, out of which 12 are simplified in the loading phase,
leaving 8 instructions (marked in bold in the table) to be executed in the
interpreter phase. In total, we recorded 1290 IMs in the loading phase of
the loop and 184 IMs in the interpreter phase (with two loop iterations).
Between loading and interpreting the loop, the WASM system presents a
123x increase in instructions executed compared to when the same code is
executed in the native system.

Our goal is now to understand how unique each trace of IMs for each
of these WASM instructions is. For this, we profiled each WASM instruction
(see Section 4.6 for more details) and obtained their traces of IMs. With
this profiling, we build candidate sets for the WASM system, considering
the information obtained from multiple IMs to differentiate instructions.
Table 4.2 reports the candidate set sizes for the instructions in the loop.
For several instructions, the attacker gets candidate set sizes of size 1, thus
perfectly recovering the instruction, which was not possible in the native
system.
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Table 4.2: Attacker view of the loop in Listing 4.2 when the source code
is compiled to WASM. We report the number of executed IMs recorded
both when loading (as done in the first JIT phase) and interpreting each
WASM instruction. Some instructions are simplified by the JIT loader
and are thus not present in the interpreter trace. Instructions with a bold
font are executed both in the loading and interpreting phase, while the
other instructions only during loading. Numbers are computed from the
same version of WAMR as in Listing 4.1. Compared to Table 4.1, here we
report only one iteration of the loop (due to space constraints). The second
iteration would see the bold instructions repeated. Candidate sets contain
only semantically different WASM instructions.

Instruction
# of IM per instruction Candidate set size

JIT Loader Interpreter JIT Loader Interpreter

loop 66 - 1 -
get.local 63 - 1 -
get.local 62 - 1 -
get.local 63 - 1 -
i32.mul 33 9 4 6
i32.store 91 14 1 1
get.local 63 - 1 -
i32.load 91 14 1 1
set.local 80 - 1 -
get.local 63 - 1 -
i32.load 91 14 1 1
set.local 80 - 1 -
get.local 62 - 1 -
i32.const 55 - 1 -
i32.add 33 9 4 6
local.tee 97 7 1 2
get.local 62 - 1 -
i32.lt_s 33 11 4 6
br_if 35 14 1 1
end 67 - 1 -
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Figure 4.6: Candidate set size distribution of WASM instructions in the
WAMR interpreter under the SotA attacker. Only semantically different
instructions are included in the candidate sets. The green dotted line is at
y = 1, where candidate sets of that size offer no confidentiality.

However, even in WASM, some instructions are very similar to each
other, e.g., instructions that require few x86 instructions to execute tend
to still be challenging to classify accurately. For instance, in the WAMR
interpreter, the i32.add and i32.sub instructions are both implemented
with 9 x86 instructions and differ for a single one: i32.add uses an x86 add,
wherein i32.sub has an x86 sub. Since the side channels available to the
SotA attacker cannot distinguish between these two instructions, i32.add
and i32.sub end up in the same candidate set3. We can also observe this
in Table 4.2: instructions with a small number of IMs tend to have bigger
candidate set sizes.

In summary, the WASM system leaks more instructions of the example
loop compared to the native system, with 85% of its instructions being fully
leaked (compared to 0% in the native system).

Full ISA. Similarly to the native system, we compute all possible candidate
sets of the WASM system: if the candidate sets tend to be small for a large
percentage of the WASM ISA, then the system itself cannot provide code

3Interestingly, the attacker can still distinguish these two instructions because they differ
in multiple instructions in the loading phase.
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confidentiality, as this attack will likely extend to different WASM binaries
besides our sample program.

For this, we obtained the IMs of each WASM instruction while profiling
a WASM test suite [109]. The test suite we used is developed to comply
with the WASM standard and ensures we reach a good coverage for all
the 172 core WASM instructions. We depict the distribution of the WASM
instructions’ candidate sets that we obtained for WAMR in Figure 4.6. As
can be seen, almost 80% of the ISA has a candidate set size ≤ 2, both
in the loading and interpreting phase (which, in an actual attack, can
be combined). Compare this to the native system, where even the ideal
attacker could, at best, recover 10% of the ISA instructions, and it is clear
that the WASM system is leakier than the native system. Finally, not only is
the WASM system leakier, but the results also highlight that a SotA attacker
can practically break code confidentiality for at least 70% of the WASM
ISA.

4.6 IR Instruction Leakage in Practice
We now describe how to extract the confidential WASM instructions from
the WASM system. We focus on SGX due to the availability of better tooling
in this platform. We discuss in Section 4.9 to what extent these results
extend to SEV as well.

We depict our attack in Figure 4.7. In the Profiling Phase, the attacker
single-steps the enclave execution to collect IMs for each possible WASM
instruction and generates a database of patterns. We detail this phase in
Section 4.6.1. In the Attack Phase, the attacker again single-steps the enclave
execution while the target WASM program is being interpreted. Here, the
attacker obtains a single stream of IMs that need to be segmented correctly
before matching each segment with the previously profiled patterns. We
describe this phase in Section 4.6.2.

4.6.1 Profiling Phase
In this phase, the attacker’s goal is to profile the target translator and
generate patterns of traces for each WASM instruction. To do so, the attacker
follows the methodology described in Section 4.4: having complete control
over the enclave during this phase, the attacker can know which IMs
correspond exactly to which WASM instruction. For example, we do so
by saving the Instruction Pointer (IP) together with the measurements
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and obtaining the ground truth of the parsed instructions from a modified
translator4.

To build an extensive dataset for the translator, the attacker needs to
profile a program that calls as many WASM instructions as possible, feeding
different input data to reach good coverage5. We use the official WASM
test suite [109], maintained by the WebAssembly Working Group that is
used to test the adherence of new compilers and interpreters to the WASM
specification.

On the translators that we tested, we empirically verified that we only
need two pieces of information for every IM to segment an execution trace:
the code page number that was accessed; and whether the x86 instruction
performed a memory read, a memory write, or no memory access. Thus
we represent each IM with a string composed of two parts: (i) the code
page number; and (ii) the memory access type, e.g., 1r represents an x86
instruction that was executed from page number 1 and made a memory
read. Similarly, 1w and 1- refer to a memory write and to no memory
access, respectively, from an instruction executed on page 1. When a WASM
instruction is composed of multiple x86 instructions, we concatenate these
symbols for the various IMs that were recorded for that WASM instruction.
We refer to this string as the pattern for a particular WASM instruction.

Profiling the WAMR Interpreter

We now further discuss how we extract these patterns in the WAMR [103]
interpreter during both of its execution phases: loading and interpreting.

Loading. During the loading phase, WAMR loops through each instruction,
as shown in Listing 4.1. By manually inspecting the binary of the WAMR
interpreter, we found the addresses of the first instruction of this loop and
the first instruction outside of the loop. Segmenting the loader execution
trace is straightforward with knowledge of the IP: we look for the loop’s
entry point and create a new segment every time the entry point’s IP is
found in the instruction trace. When we encounter the first instruction
outside of the loop, we stop segment generation and restart it when we
reencounter the beginning of the loop. This gives us a pattern for each

4The instruction pointer is not available to the attacker in the attack phase but represents
valuable information: printing such ground truth of executed instructions is helpful for
verification purposes, as the translator might, e.g., parse some instructions twice or skip some
of them.

5Feeding different input values is important because the same WASM instruction might be
executed by a different set of x86 instructions depending on what inputs are given to it, as we
discuss in Section 4.6.2.
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loop iteration. Then, to know which WASM instruction corresponds to each
iteration, we modify the WAMR interpreter to record which instruction was
parsed in which iteration. Note that only the ground truth is obtained from
a modified WAMR version: the execution trace to attack is obtained from
an unmodified version.

Interpreting. In the interpreter phase, the WAMR control flow is more
involved than in the loading phase. The interpreter executes one instruction,
then fetches the pointer of the next instruction from memory and directly
jumps to it – without performing any loop. Crucially, every jump to the next
WASM instruction is implemented as an indirect jump (e.g., jmp *rax).
Thus, to segment the execution trace of the interpreter, we look for indirect
jumps in the execution trace. Since we have the IP for each IM, we can
check on the WAMR interpreter whether the instruction at that IP is an
indirect jump. Whenever we encounter an indirect jump, we create a new
segment6. Similarly to the loader, we need to label the segments: we again
modified the WAMR interpreter to print the instruction label every time it
starts interpreting a new instruction. This allows us to get the ground truth
of labels for each test in the test suite. We then assign the labels to each of
the segments obtained by monitoring the IP of the execution trace.

The process would follow a similar flow in other translators: what the
attacker needs is a way to find instructions boundaries based on the IP
(either by manual inspection or automatically) and a way to map each
segment to (known) WASM instructions.

Fused Instructions Handling

So far, the way we described to build patterns for WASM instructions does
not properly account for fused instructions from the CPU: separate x86
instructions that the CPU executes as one. When single-stepping with
interrupts, these instructions will be stepped through atomically – thus, we
will only encounter one IM in the execution trace instead of two. This
phenomenon has also been documented in previous work [108, 61].
However, while previous work observed deterministic instruction
fusion [61], we observed that for the same pair of instructions in the
program (at the same virtual address), it could happen that the
instructions sometimes execute unfused. This is the case even when the
same input data is given to the program and both with and without
hyperthreading enabled. We hypothesize that this behavior is due to the

6This approach only works if indirect jumps are used only at the boundary between two
instructions, as is the case in the WAMR interpreter.
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precise timing at which the interrupt is delivered in relation to the stage of
the execution of the to-be-fused instruction pair. However, the timing at
which the interrupt is delivered cannot be controlled to such precision,
and therefore the behavior randomly occurs, albeit somewhat infrequently.
Note that we collect significantly larger instruction traces compared
to [61] (e.g., some traces we obtain have more than 1 billion instructions)
and hence have a higher likelihood of observing this behavior compared
to [61].

Unfortunately, this leads to the pattern of WASM instructions being
non-deterministic. Theoretically, we could collect every possible variation
of one WASM instruction, repeating a trace collection many times until we
get all possible patterns. However, this approach is infeasible in practice for
two reasons. First, since, when interrupted, the CPU non-deterministically
fuses instructions, collecting all possible patterns for a WASM instruction
requires many repetitions and is not guaranteed to terminate. Second, the
number of different traces needed to be collected grows exponentially
with the number of possible fused instruction pairs. Just having 10 fused
instructions pairs in a trace requires 1024 patterns to be collected and
stored.

We addressed this issue by detecting which IM could be related to
fused instructions and then saving only the fused version of the pattern.
Alongside the pattern, we save an array of positions that could potentially
be “unfused”. This representation is not only compact (we need to save only
one version of the pattern) but also allows us to match any combination
of unfused instructions in the pattern efficiently. Knowing which IMs are
related to fused or unfused instructions is done by cross-referencing the
x86 instructions of the WAMR loader with the IP recorded for the IM.

4.6.2 Attack Phase

Trace Segmentation. In the attack phase, the adversary now targets a
production enclave with the target confidential algorithm and profiles it to
obtain an execution trace. As the attacker cannot obtain the IP, segmenting
the different IMs for each WASM instruction is more difficult in this phase.
However, by representing the full execution trace as a string, we can
reduce it to the well-known string-matching problem. Segmenting the
trace then proceeds as follows. Starting from the beginning of the string,
we try to match all of the previously collected patterns. We then take one
of the matches7 and advance the starting pointer to just after these

7Multiple matches are possible because patterns overlap.
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instructions. We then try to match a new pattern to this position in the
string. If nothing matches, we backtrack and choose one of the previously
found valid patterns. We repeat this process until the whole execution
trace is perfectly segmented. We will discuss the performance of this
algorithm in practice in Section 4.7.

Creating and Matching Patterns. The approach described above assumes
that we can collect every possible pattern for each WASM instruction. Whilst
the test suite patterns achieve a wide coverage, we still do not collect
enough patterns to fully segment unseen binaries. In particular, while linear
WASM instructions (WASM instructions that have no loops or branching
conditions) exhibit only a single pattern, it is challenging to build every
pattern for instructions with loops and branches. For instance, the WASM
clz instruction is implemented in the interpreter with a loop that iterates
once for every leading zero present in the input integer.

For cases of instructions with complex control flow, we leverage the
observation that, generally, their start instructions and end instructions
will be the same, no matter how complex the internal control flow is.
Thus when we encounter more than one pattern for the same instruction,
we automatically try to generalize its pattern. We do this by arranging
the characters of the string representation in a tree where each node of
the tree is one token (code page number and access type). We then add
multiple patterns to the same tree and extract the common prefixes from
it. Particularly, after the tree is assembled, we traverse it and collect every
pattern found up to 2-3 splits of the tree. We found this heuristic to be
quite accurate in practice. We do the same process both to find common
beginning prefixes and to find end suffixes.

Between matching for common prefixes and suffixes and accounting
for variable numbers of instructions due to fused instructions, we found
that the most convenient way to apply the patterns was through regular
expressions (regexes). This allowed us to use already existing and
optimized matching engines, and to rapidly prototype different matching
configurations. We automatically generated regexes for each possible
segment while also keeping the regexes’ complexity within bounds.

Segment Classification. As discussed above, trace segmentation and
segment classification are inherently linked tasks. Given a correct
segmentation, we already get “for free” a possible list of candidate WASM
instructions for each segment: those are the instructions whose known
patterns matched the segment. We call this a candidate set. In fact, this is
how we generated the candidate sets for WASM that we discussed in
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Figure 4.8: Timing distribution of the 5th x86 instruction for the five listed
WASM instructions. The two division operations seem to be following a
different distribution than the others. N=11527

Section 4.5.3. Recall that segments are generated only using the code
pages and the memory access type: this information alone is so accurate to
not only segment the trace but also to perfectly classify up to 80% of the
WASM ISA.

Candidate Sets Pruning. We investigate whether we can further reduce
the candidate set size for the remaining 20% of the WASM ISA where there
is more than one candidate. In particular, IMs also contain the time spent
executing individual x86 instructions, a feature that we did not use so far in
our attack, as it is not fully deterministic. We explore the potential of using
time measurements to prune candidate sets using a concrete candidate
set obtained from the WAMR interpreter, which contains the following
WASM instructions: F32_DIV, F64_ADD, F64_DIV, F64_MUL, and F64_SUB.
Manual inspection of the interpreter’s binary reveals that all of these WASM
instructions are expanded into 9 x86 instructions. However, among these 9,
only the fifth x86 instruction differs between the various WASM instructions.
Therefore, any potential timing difference should be visible only in the
5th instruction8. The distribution of the recorded timings of the 5th x86

8We observed that surrounding instructions are also affected and exhibit timing differences,
albeit smaller ones.
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instruction is depicted in Figure 4.8. While the timing distributions mostly
overlap, they still exhibit some differences between them.

To demonstrate the significance of these timing differences, we
developed a basilar classical machine learning model that tries to classify
between the aforementioned five WASM instructions using only the timing
data. A simple random forest classifier [110] achieves around 45%
accuracy, significantly outperforming a random guess (which has 20%
accuracy). A confusion matrix is shown in Figure 4.9.

In summary, the candidate sets that we presented in Figure 4.6 could
be improved by including timing information. However, the attacker would
have to record multiple executions for the same confidential algorithm to
establish some confidence in the results. On the other hand, the information
used when segmenting is deterministic, so the attacker only needs one
execution of the confidential code to build the candidate sets that were
presented in Figure 4.6, and we thus deem the deterministic pipeline to be
sufficient in practice.

4.7 Evaluation
We evaluated the methods and algorithms presented in Section 4.6 by using
an Intel SGX enclave running the WAMR [103] runtime at commit version
b554a9d. To collect the patterns for each WASM instruction, we single-
stepped WAMR while it was executing the WASM test suite [109] (commit
e87021b). We run only tests that do not test for exceptions, as we are
interested only in correct programs, although it would be straightforward
to also include these tests.

Pattern Generation. Overall, we profiled 21073 tests. Note that we
single-step the test suite with the enclave in debug mode, as we need the
IP to produce the segmentation patterns as discussed in Section 4.6.1.
When we are profiling the WAMR loader, we only single-step the loader
function (wasm_loader_prepare_bytecode). When we are profiling the
interpreter, we single-step only the interpreter’s main function
(wasm_interp_call_func_bytecode). By monitoring the program
counter after the trace collection, we observed that we can very reliably
single-step the enclave through interrupts, as no instruction was skipped
for any of the tests in the test suite. Hence we run each test only once. In
our machine (with an Intel i9-9900KS CPU), this takes about 24 hours for
the loader and about 36 hours for the interpreter. In total, we found 1576
unique patterns for the loader and 345 unique patterns for the interpreter.
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Figure 4.9: Confusion matrix of a simple random forest classifier for five
WASM instructions. The classifier is pretty confident about the two divisions
but cannot distinguish the other 3 instructions.

Using the methods described in Section 4.6.2, we then created 137 regular
expressions for the loader patterns and 133 for the interpreter ones.

Instruction Matching. The SotA adversary can be instantiated in practice,
and thus we performed our evaluation with real-world experiments. To
test the generality and usefulness of the patterns, we used them to classify
single WASM instructions in three synthetic programs. One of the programs
is written in C and computes various cryptographic functions. The other
two are written in Rust. One is part of a chess engine [104], while the
other computes the hash of its inputs. We compiled these programs to
WASM and then gave them as input to an initial enclave running WAMR.
We single-stepped this enclave in production mode (i.e., without getting
the IP information). Not all possible instruction patterns of these programs
were present in the test suite. We verified this by naively trying to match
the patterns we collected from the test suite and found that some parts of
the trace could not be segmented. However, we were able to fully segment
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the trace using generalized regex patterns (cf. Section 4.6.2). The C code,
the Rust chess code, and the hash code respectively executed 474M , 431M ,
and 62k WASM instructions. When loading the code, they parsed 9k, 38k,
and 49k WASM instructions, respectively. Single-stepping the interpreter
phase took around 10 hours for both the chess engine and the C code
and a couple of seconds for the hash engine. Single-stepping the loading
phase completed in less than 5 min. Roughly the same amount of time was
required to segment the traces.

From the loading phase information, we perfectly recover 46%, 49%,
and 50% of all the instructions in the C code, the Rust chess engine, and
the Rust hash code, respectively. At least 65% of the instructions belong to
a candidate set of size ≤ 3 in these three programs. Only looking at the
interpreter phase, we recover around 28% of instructions with perfect
information. Note that these percentages are obtained from a single
execution trace and without taking into consideration the execution time
of the instructions.

Known Programs Classification. An application of the recovered WASM
instruction traces is using it to classify which program or library is executing
in the TEE among a fixed known set. For instance, this allows checking if a
vulnerable version of a library is present in the confidential code supplied
to the enclave. This is a useful building block for other attacks or could be
used to check license violations.

Note that IR execution is particularly vulnerable to this classification
task compared to native execution. This is because in native execution
the attacker can only measure the instructions from the executed code
paths. This implies that the attacker would need to either know the input
of the enclave or have a trace for every possible code path of the target
function/library, which is being checked for presence in the enclave. On
IR execution, on the other hand, the loading phase is particularly well suited
to match known segments of code. This is because, generally, instructions
are parsed sequentially and in the same order across executions, no matter
what other inputs are provided to the enclave. Not only this but functions
are also parsed independently in the WAMR loader, allowing the attacker
to even check for individual matching function signatures of a library.

We note that smaller functions are generally harder to classify than
larger ones (where it is sufficient to just match with 100% confidence
a couple of marker instructions in them). We thus tested several small
functions by trying to match their presence in a larger library. We took
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the Go Ethereum implementation9 and compiled it into WASM. We copied
the implementation of 10 individual arithmetic functions (responsible for
handling big number operations) of this project and used them in smaller
programs. These smaller programs simply contain a main function that
calls the copied library functions. We then collected a trace of the loading
of these small programs and segmented the WASM instructions from these
traces. Finally, we tried to match the traces into a trace of the loading of
the whole library. We were able to perfectly match the smaller functions
in the trace of the entire Go Ethereum program, thus demonstrating that
segment classification is practical in the WASM system and can help us
classify which confidential WASM program is running in the enclave.

4.8 Related Work
In this section, we discuss which side-channel attacks on TEEs we build
upon and how they influence the information we assume the attacker gets
access to (c.f., Section 4.4). Note that generally, these side channels are
developed to leak data from enclaves given the knowledge of the source
code. However, in our setting, we need to adapt them to work without any
prior knowledge of the source code.

Stack and Memory Access. Page table-based attacks on Intel SGX exploit
the untrusted OS role in managing the page tables for enclaves [43]. The
page faulting mechanism can be abused [17] to notify the attacker through
page faults of enclave code and data accesses. Similarly, the access and dirty
bits of the page table entries can be used to monitor read and writes [19,
18] accesses performed by the enclave. Monitoring these bits while single-
stepping gives the attacker a per-instruction resolution of these values.
Moreover, the attacker can also detect control-flow changes if the instruction
jumps/branches to another page. Note that these attacks are completely
deterministic and noise-free.

Microarchitectural Structures. Additional information can be extracted
from the numerous microarchitectural details made available to the OS.
While performance counters are not updated in enclave mode, their values,
as measured from an attacker-controlled program, can still be influenced
by the enclave execution. It is also worth mentioning that the last branch
record (LBR), given knowledge of the location and target of jumps in an
enclave, can be used to test for branching conditions [16]. It is feasible to
extract the LBR given the knowledge of the code, but it is challenging to

9https://github.com/ethereum/go-ethereum

https://github.com/ethereum/go-ethereum
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employ this side channel in our setting given that we do not know a priori
the address of the jumping instructions in the confidential code.

Instruction Timing. Instruction timing is considerably noisier than any
previously described attack. To estimate the best resolution available to the
attacker, we describe how related work leaks data from enclaves despite
the noisy measurements. Nemesis [59] observed that while single-stepping
via interrupts, the interrupt delivery time is dependent on the instruction
executed by the enclave. Usually, the attacks that leverage these timing
measurements [108, 59, 83] perform multiple thousands of measurements
for a single instruction to reduce the noise. We note that repeating
measurements is not trivial and either requires the attacker’s capability of
re-running the enclave arbitrarily [59] or specific instructions before the
measurement to launch a microarchitectural replay attack [83]. Even with
the ability to repeat measurements, these attacks usually have a resolution
of 40− 100 cycles.

Port Contention. The final source of information we consider is related to
monitoring CPU port contention. Several attacks have demonstrated that
port contention is a practical side-channel attack [82, 111]. However, they
usually require repeated experiments to extract a signal from their noisy
measurements. Nevertheless, we assume complete knowledge of the exact
functional units used in the ideal attacker in Section 4.5.

Summary. We chose to give the SotA attacker an even better timing
resolution than what is currently feasible by allowing them a 10 cycles
resolution from a single run. Note that we also study an ideal attacker
which, among other things, is cycle accurate and can perfectly monitor the
CPU port utilization. As discussed in Section 4.7, despite these capabilities,
both attacker models leak very little information from the native system.
On the other hand, using only controlled-channel information is enough in
the WASM system to leak the vast majority of the ISA, highlighting the
magnitude of the leakage amplification between the two systems.

4.9 Discussion
Our study considered an attacker with the goal of recovering the ISA
instructions of the confidential algorithm, i.e., the opcodes. These results
can be used in different ways: we now discuss some possible practical
attacks that leverage such data.

Reverse-Engineering Algorithms. A reverse engineer that wants to
understand what the confidential algorithm does can leverage our results
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on semantically equivalent instructions (see Section 4.4) to further reduce
the number of candidate instructions and reconstruct the logic of the
algorithm. Note that our attacker only leaks the instructions but not their
operands. However, in a language like WASM, this is irrelevant for most
instructions since their operands are implicit. For instance, an addition in
WASM implicitly operates on the last two values present on the stack. Thus
leaking that an addition was performed is enough to also leak the
operands in this case. Note, however, that even in WASM, some
instructions take constant values as parameters. These instructions can
move values around on the stack based on their operand. We leave the
task of leaking the operands for these instructions as future work.

4.9.1 Applicability to Other Languages
For our evaluation, we chose WASM as the language to instantiate the
particular IR execution that we studied (cf. Section 4.3). However, some
code confidentiality designs in TEE (e.g., Scone [25]) also support
different interpreted languages, e.g., Python and NodeJS. The methods we
introduced in this paper can easily be applied to analyze how much the
translators of these other languages amplify the instruction leakage. As far
as we are aware, their translators are not designed to provide code
confidentiality, so we expect them to exhibit similar levels of leakage.

4.9.2 Applicability to SEV
To our understanding, the side-channel information and capabilities of the
attacker that we use for SGX apply to SEV as well. Particularly, most of
the side-channel information we use relies on manipulating interrupts and
on monitoring page-level accesses. While no framework exists for SEV to
conveniently replicate these functionalities, we remark that the hypervisor
already performs these tasks during normal VM management. For instance,
the hypervisor can schedule preemption interrupts and can tamper with
page-level accesses by modifying the 2-level page translation structures.
We thus conclude that the results we obtained for WASM in SGX should
apply to SEV as well.

4.10 Conclusions
In this chapter, we studied two different approaches commonly used for
deploying confidential code into TEEs – deploying native binaries and
intermediate representation (IR) – against state-of-the-art side-channel
attacks. We developed a novel methodology to analyze the side-channel
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leakage of these approaches. We experimentally validated our
methodology on nine modern microarchitectures and showed that
IR-based confidential code deployments amplify any leakage found in
native execution deployments. We showed that native execution results in
limited leakage even against an ideal attacker, while next to no code
confidentiality against a state-of-the-art attacker can be achieved when
using WASM as an IR. Note that the attacks we performed assume that the
attacker has no prior knowledge of the confidential instructions. While IR
execution is already unsafe even without adding prior knowledge
capabilities, we leave to future work the task of investigating whether
native execution still holds enough confidentiality guarantees in this
setting.





Chapter 5

Preventing Single-Stepping

The attacks introduced in Chapters 3 and 4 rely on the ability of the attacker
to reliably single-step the enclave for the whole duration of the attack. This
capability is a powerful primitive for the attacker, as it also enables several
other attacks, e.g., the ones mentioned in Section 3.9.

Two conditions are sufficient for an attacker to be able to single-step
an enclave:

1. Have an interrupt whose frequency is high-enough to fire during the
time window of the first enclave instruction.

2. Detect zero-steps, that is, detect whether interrupts were sent so early
that the enclave could not execute any instruction.

In SGX, the first condition is facilitated by two mechanisms. The first
mechanism is that the x86 architecture guarantees that, when an interrupt
arrives, only the instruction at the top of the reorder buffer (ROB) will be
retired (if it does not fault), and then the interrupt will be served. This
is the case even if subsequent instructions have already been completed
out of order. The second relates to the number of microops of an SGX
instruction. Among them, the ones related to enclave state transitions (cf.
Section 2.4.1) take thousands of cycles, as discussed in Chapter 3. These
two mechanisms together mean that there is a large window in which to
send an interrupt which will cause to retire only the first instruction after
ERESUME (as opposed to no enclave instruction retires or multiple of them
do). The APIC timer is precise enough to satisfy this condition in Intel
platforms.

Despite this large window, instructions take a variable amount of cycles
to execute, e.g., due to variable memory latency. Since ERESUME’s execution
latency is not deterministic, practically interrupts are set conservatively
so that, at worst, they fire too early (zero step) but never too late. This is
why the second condition defined above, being able to detect zero steps,
is useful. A common technique used when single-stepping SGX to detect
zero steps is to look at the accessed bit of the page table entry (PTE) of
the enclave. The CPU sets the accessed bit in the PTE containing the code
currently executing the enclave if and only if an instruction was fetched
and retired from that page. This gives a clear signal to the attacker as the
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(a)
(b)

Figure 5.1: Differences when performing (a) an AEX without AEX-Notify
and (b) with AEX-Notify enabled and implemented.

PTE is supposed to be managed by the OS, and so it can be reset in between
each single-step attempt.

Note that no matter how frequent the interrupts are, they occur
transparently from the point of view of the enclave, as upon receiving an
ERESUME, the CPU restores the execution context exactly as it was when
the enclave was received.

5.1 AEX-Notify
To provide enclave developers with a way to mitigate against single-stepping
attacks, Intel introduced an extension to SGX named AEX-Notify [112]. In
short, this extension allows enclaves to configure a handler to get called
upon a return from an AEX (cf. Section 2.4.1). We depict in Figure 5.1 the
process of handling an AEX both without AEX-Notify (Figure 5.1a) and
with AEX-Notify enabled (Figure 5.1b). In the figure, inside the enclave, we
show a list of instructions, referred to as ix , where x is an integer. This helps
us highlight how execution progresses as the enclave is being interrupted.
We first recap how these steps work without AEX-Notify, and then discuss
what differs with AEX-Notify enabled.

➀ An APIC interrupt arrives while instruction i2 is executing. i2 is at
the top of the ROB when the interrupt arrives, thus all the other
instructions are flushed and i2 gets committed. The instruction
pointer (RIP) gets updated to i3.

➁ An AEX gets executed. As part of the AEX, the execution context,
including the RIP, is saved in the SSA of the enclave. As part of the
AEX, the instruction pointer of the AEP handler is saved in the stack
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so that it can be used later to resume the enclave execution. Execution
continues at the APIC timer IRQ handler.

➂ The IRQ handler executes. The last instruction of the IRQ handler
is the IRET instruction. The IRET instruction pops the AEP address
from the stack and resumes execution from there.

➃ The AEP function resumes the enclave by executing ERESUME. Upon
executing the ERESUME instruction, the CPU restores the enclave
execution context, including restoring the registers values from the
SSA that were saved as part of AEX. The next instruction that is
fetched and executed is that pointed by the RIP register after it has
been restored from the SSA: i3.

To enable AEX-Notify, the enclave needs to enable some bits (set as part
of ECREATE, see Section 2.4.1), which are reflected as part of the attestation.
Additionally, an AEX-Notify handler address needs to be provided in a
similar way in which enclave entry points are specified. Steps ➀ to ➂ are
identical to before, so we only describe the remaining ones next:

➃ The AEP function resumes the enclave by executing ERESUME.
ERESUME executes similarly to EENTER and calls one of the enclave
entry points. No context is restored. The entry point called is a
handler for the AEX event. The function starts executing and records
the fact that the enclave was interrupted. If the handler decides to
continue the execution, it can use a new instruction: EDECCSSA.

➄ EDECCSSA restores the context, much in the same way ERESUME did
in the baseline without AEX-Notify. The difference is that EDECCSSA is
called from within the enclave to restore the context rather than being
called by the untrusted application. EDECCSSA restores the context
from the SSA, which was saved by the AEX. The next instruction that
is fetched and executed is that pointed by the RIP after it has been
restored from the SSA: i3.

As can be inferred from this description, AEX-Notify does not explicitly
block either of the two conditions needed to single-step introduced at the
beginning of this chapter. However, albeit we did not test this at the time of
writing (due to lack of hardware supporting AEX-Notify), we speculate that
it would make timing the interrupt harder as compared to just executing
ERESUME. Thus the first condition is most likely going to be harder to achieve
reliably with AEX-Notify implemented. Nonetheless, the handler needs to be
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carefully implemented so that the attacker is unable to infer when EDECCSSA
is about to be called. To give an example of what can go wrong, assume
that execution in the handler crosses a page boundary just before calling
EDECCSSA. The attacker can then monitor the access bit on the relevant
PTE from another thread and start the APIC timer when it detects it.

In summary, this solution in itself does not block any of the preconditions
necessary for an attacker to single-step an enclave via interrupts. Its primary
purpose is to remove the transparency of single-stepping. With AEX-Notify,
the enclave can be (optionally) notified every time a re-entry from an AEX
occurs. Enclaves for which single-stepping is within the threat model can
therefore choose to abort execution if too many AEX events are detected,
something which was not (easily) possible without AEX-Notify. This solution
hence, at the very least, thwarts the capability of the attacker to execute
a large number of consecutive single steps, which is a step in the right
direction. However, it potentially leaves the door open for more stealthy
attacks. For instance, the attacker could single-step only a small segment
of the target enclave and cover the whole execution in separate runs. Note
that if this is possible, full trace collections could still be enabled but would
require combining the data from multiple executions, which might not be
trivial to do (cf. Appendix A.3).
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Chapter 6

Relay-safe Attestation

6.1 Introduction
On TEEs such as SGX and SEV, remote attestation guarantees that the
attested enclave runs the expected code. It does not, however, guarantee
that the enclave runs on the expected computing platform. An adversary
that controls the OS (or other software) on the target platform can relay
incoming attestation requests to another platform. Such relay attacks are a
long-standing open problem in trusted computing, as already more than a
decade ago, Parno identified such attacks in the context of TPM
attestation [113].

Upon first look, it might seem that relay attacks do not pose a problem
for TEEs. If the attacker relays the attestation to another machine, the same
security guarantees should hold since the data will only be available within
the remote TEE, and the enclave code that can access the provisioned
secrets is verified. However, such simple reasoning is incorrect.

In this chapter, we provide the first careful analysis of the implications
of relay attacks on SGX and show that by relaying, the adversary increases
their capabilities to attack the attested enclave significantly. One example
of increased adversarial capabilities is physical side-channel attacks. If the
adversary redirects the attestation to a platform that they physically control,
they can mount various physical side-channel attacks, like [114, 115, 116,
117], that would not have been possible without the relay. Another example
is executing enhanced digital side-channel attacks. While controlling the
OS is in the SGX attacker model, it is not unrealistic that an adversary
might be in the situation of controlling only user-privileged code on the
target platforms. This degree of control, however, allows them to redirect
attestation to another platform where they control the OS, which allows
them to launch software-based side-channel attacks, such as [52, 15, 53],
that leverage system privileges to attack enclaves. In Section 6.3, we explain
further examples of attacks that are enabled by attestation redirection.

A typical “solution” to relay attacks is to assume trust on first use
(TOFU). However, in many application scenarios, TOFU is neither secure
nor practical. For example, solutions where attestation is performed
immediately after a fresh OS installation cannot be applied to settings
where OS re-installation is simply not possible. Besides, all TOFU variants
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assume that the target platform OS is trusted, even if momentarily, which
violates SGX’s trust model.

The SGX attestation protocol is designed to be anonymous. The protocol
is based on EPID group signatures [45], and thus, the remote verifier
cannot distinguish whether the correct enclave on the target platform was
attested or if the attestation was redirected to another platform. Upon
first inspection, it may seem like relay attacks are only possible because
of such anonymity features and that relaying could be easily prevented if
attestation protocols were designed to be non-anonymous. However, such
simple reasoning is incorrect as well. We show that all SGX attestation
variants, including the “linkable” attestation mode and the Data Center
Attestation Primitives (DCAP) [46], are vulnerable to relay attacks. We also
explain why relay attacks would remain possible, even if all anonymity
features were removed from the attestation.

Our solution. We propose a new solution, called PROXIMITEE, that prevents
relay attacks by leveraging a simple embedded device that is attached to
the attested target platform. Our solution is best suited to scenarios where
i) the deployment cost of such an embedded device is minor compared
to the benefit of more secure attestation and ii) TOFU solutions are not
acceptable. Attestation of servers at cloud computing platforms and setup
of SGX-based permissioned blockchains are two such examples.

In PROXIMITEE, the remote verifier establishes a secure connection to
the embedded device whose public key it knows through standard device
certification. The device performs normal SGX attestation and additionally
verifies the proximity of the attested enclave using a simple
distance-bounding protocol [118]. After the initial attestation, the device
performs periodic distance-bounding measurements, and the
communication channel created during the attestation stays active only as
long as the device is connected to the same platform. Thus, the physical
act of attaching the device to an SGX platform enables secure attestation
(enrollment), while detaching the device will prevent further
communication with the attested enclave (revocation). Neither enrollment
nor revocation requires interaction with a trusted authority. This property
is useful in applications like permissioned blockchains where validator
nodes are separate organizations assigned by a trusted authority. The
authority can issue one device per organization, and each organization is
free to manage its computing resources (e.g., detach the device from one
platform and attach it to another) without interaction with the authority.
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Main Results. Parno [113] identified distance bounding as a candidate
solution to TPM relay attacks already more than ten years ago but
concluded that it could not be realized securely as the slow TPM
identification operations (signatures) make a local and relayed attestation
indistinguishable. Our evaluation shows that proximity verification is
possible for SGX assuming very fast adversaries. The main reason why
distance bounding protocols work for SGX but not with TPMs is that SGX
is a programmable TEE where it is possible to use pre-established security
associations and efficient challenge-response protocols based on simple
operations such as XOR.

To evaluate PROXIMITEE, we implemented it using a USB 3.0
prototyping board. The main purpose of our evaluation is to demonstrate
that the adversary cannot redirect the attestation over the internet to an
adversary-controlled platform without being detected. We focus on such
redirection, as it offers the most increased capabilities to the adversary
(e.g., physical attacks). The secondary purpose of our evaluation is to
determine whether proximity verification can prevent redirection to a
co-located platform, like another server on the same server rack. Such
relays are typically less harmful, but ideally, they should be prevented as
well.

In our evaluation, we simulate a strong adversary that i) is only a single
network hop away from the target, ii) performs the required protocol
computations instantaneously, iii) has an infinitely fast hardware interface,
and iv) has enabled software-based packet forwarding optimizations on
the target platform. We measure the legitimate challenge-response latency
on our prototype to be 185µs on average. In the case of the simulated
relay attack, the average latency is about 264µs. These two latency
distributions are distinguishable and allow us to set our proximity
verification protocol parameters such that the adversary’s probability of
performing a successful relay attack is negligible (3.55 × 10−34), while
legitimate verification succeeds with a very high probability
(0.999999977). Importantly, the adversary cannot increase their success
probability with repeated attempts, as attestation is triggered by the
trusted remote verifier. Our experiments also show that enclave revocation
using periodic proximity verification is both secure and practical.

The performance overhead of proximity verification is small: the initial
proximity verification adds only a small delay to the attestation protocol,
and the periodic proximity verification consumes only a very minor fraction
of the available USB 3.0 channel capacity. Our implementation shows that
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the complexity of such a device can be small: the software TCB of our
prototype is 3.8 KLoC.

Emulation Attacks. Additionally, we consider a stronger adversary that
has obtained leaked, but not yet revoked, attestation keys and can emulate
an SGX-enabled processor. Proximity verification alone cannot prevent
emulation attacks, as a perfectly emulated enclave would pass any proximity
test. Therefore, we propose a second attestation mechanism based on boot-
time initialization.

In this solution, the target platform loads a small, single-purpose kernel
from the attached device and launches an enclave that seals a secret key
known by the device. Subsequently, when attestation is needed, the enclave
can verify the proximity of other enclaves on the same platform using SGX’s
local attestation. This enables secure attestation regardless of potentially
leaked attestation keys. Our second solution can be seen as a novel variant
of the well-known TOFU principle. The main benefits over previous variants
are easier adoption (e.g., no OS re-installation) and increased security (e.g.,
OS not trusted even temporarily).

Contributions. This chapter’s contributions are organized as follows:

1. Analysis of relay attacks. While relay attacks have been known for
more than a decade, their implications have not been fully analyzed.
In Section 6.3, we provide the first such analysis and show how
relaying amplifies the adversary’s capabilities for attacking SGX
enclaves.

2. PROXIMITEE: Addressing relay attacks. In Section 6.4, we propose a
hardened SGX attestation mechanism based on an embedded device
and proximity verification to prevent relay attacks. PROXIMITEE does
not rely on the common TOFU assumption, and hence, our solution
improves the security of previous attestation approaches. Note that
the distance bounding approaches are well-known in the literature,
but using such a method in the context of SGX is non-trivial.

3. Experimental evaluation. We implement a complete prototype of
PROXIMITEE and evaluate it against a very strong and fast adversary.
Our evaluation in Section 6.5 is the first to show that proximity
verification can be both secure and reliable for TEEs like SGX.

4. Addressing emulation attacks. We also propose another attestation
mechanism based on boot-time initialization to prevent emulation
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attacks. This mechanism, described in Section 6.6, is a novel variant
of TOFU with deployment, security, and revocation benefits.

6.2 SGX Background
Intel SGX is a TEE architecture that isolates application enclaves from all
other software running on the system, including the privileged OS [43].
Enclave’s data is encrypted and integrity protected whenever it is moved
outside the CPU chip. The untrusted OS is responsible for the enclave
creation, and its initialization actions are recorded securely inside the
CPU, creating a measurement that captures the enclave’s code. Enclaves
can perform local attestation, which allows one enclave to ask the CPU to
generate a signed report that includes its measurement. Another enclave on
the same platform can verify the validity of the report without interacting
with any other external services. Enclaves can seal data to disk, which
allows them to securely store confidential data such that only the same
enclave running in the same CPU will be able to retrieve it later.

6.2.1 Remote Attestation
Remote attestation enables an external verifier to check whether a specific
enclave has been correctly instantiated in an SGX-protected environment.
In the following, we describe the two main classes of remote attestation
supported by Intel: i) “enhanced privacy ID” (EPID) attestation [45] and ii)
“data center attestation primitives” (DCAP) [46].

EPID Attestation. The EPID remote attestation is an interactive protocol
between three parties: the remote verifier; the attested SGX platform; and
the Intel Attestation Service (IAS), an online service operated by Intel. Each
SGX platform includes a system service called Quoting Enclave (QE) that has
exclusive access to an attestation key. The remote verifier sends a random
challenge to the attested platform, which replies with a QUOTE structure,
capturing the enclave’s measurement from its creation, signed with the
attestation key. The verifier can then send the QUOTE to the IAS that verifies
its signature and correctness, checks that the attestation key has not been
revoked, and in case of successful attestation, signs the QUOTE.

The attestation key used by the QE is part of a group signature scheme
called EPID that supports two signature modes: random base mode and
name base mode, also called “linkable” mode. Both signature modes do
not uniquely identify the processor to the IAS; but only a group, like a
particular processor manufacturing batch. The difference between them is
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that the linkable signature mode allows to check whether two attestation
requests came from the same CPU.

DCAP Attestation. Whereas the EPID attestation variant requires
connectivity to an Intel-operated attestation service and is limited to
pre-defined signature algorithms, the main goal of the DCAP attestation
variant is to enable corporations to run their own local attestation services
with freely chosen signature types. To achieve this, each SGX platform is,
at the time of manufacturing, equipped with a unique Platform
Provisioning ID (PPID) and Provisioning Certification Key (PCK). Intel also
provides a trusted Provisioning Certification Enclave (PCE) that acts as a
local CA and certifies custom Quoting Enclaves that can use freely-chosen
attestation services and signatures.

DCAP attestation requires a trusted enrollment phase, where the
enrolled SGX platform sends its PPID (in encrypted format) to a local
corporate key management system that obtains a PCK certificate for the
enrolled platform from an Intel-operated DCAP service. After that, the
custom Quoting Enclave can create a new attestation key that is certified
by the PCE enclave on the same platform. The certified attestation key can
then be delivered to the corporate key management system that verifies it
by using the previously obtained PCK certificate. Once such an enrollment
phase is complete, the custom QE can sign attestation statements that can
be verified by a local corporate attestation service without contacting Intel.

6.2.2 Side-Channel Leakage
Chapters 3 and 4, and previous work as discussed in Section 3.9, have
demonstrated that the SGX architecture is susceptible to side-channel
leakage. These kinds of attacks can be addressed by hardening the
enclave’s code, e.g., using data-oblivious coding techniques (cf.
Appendix A.2).

System vulnerabilities such as Spectre [66] and Meltdown [119] allow
application-level code to read the memory content of privileged processes
across separation boundaries by exploiting subtle side effects of transient
execution. The Foreshadow attack [120] demonstrates how to extract SGX
attestation keys from processors by leveraging the Meltdown vulnerability.

Microcode Updates. During manufacturing, each SGX processor is
equipped with hardware keys. When SGX software is installed on the CPU
for the first time, the platform runs a provisioning protocol with Intel. In
this protocol, the platform uses one of the hardware keys to demonstrate
that it is a genuine Intel CPU running a specific microcode version, and it
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Figure 6.1: Relay attack: The adversary redirects attestation to their own
platform, which gives them increased (side channel and kernel level)
abilities to attack the attested enclave.

then joins a matching EPID group and obtains an attestation key [45] (or a
signing key for the PCE enclave).

Microcode patches issued by Intel can be installed on processors that are
affected by known vulnerabilities, such as the above-mentioned Foreshadow
attack. When a new microcode version is installed, the processor repeats
the provisioning procedure and joins a new group that corresponds to
the updated microcode version, and obtains a new attestation key which
allows IAS to distinguish attestation signatures that originate from patched
processors from attestation signatures made by unpatched processors [45].

6.3 Relay Attack Analysis
In this section, we provide an analysis of relay attacks on SGX.

6.3.1 Relay Attacks
We consider a system model shown in Figure 6.1 that consists of three
parties: the target platform, the remote verifier, and the attacker’s platform.
The remote verifier is a trusted party that wishes to connect and attest to a
specific SGX platform. The target platform is the SGX platform to which
the remote verifier intends to connect. Finally, the attacker’s platform is a
platform owned by the attacker that is connected to the target platform
through the internet.

Adversary Model. We consider the following adversary model that we
call the relay attacker. The relay attacker controls the OS and all other
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Figure 6.2: Relay attack implications: The tree shows the types of attacks
that are enabled by redirection and ones that are independent of relay.

privileged software on the target platform at least temporarily, in particular
at the time of the remote attestation. The OS compromise on the target
platform may be later detected and disinfected. We consider the case in
which the target platform resides in a data center or otherwise in a facility
with restricted physical access. The attacker hence does not have physical
access to the target platform (or any other co-located platform in the same
facility).

The relay attacker controls the OS and all other privileged software on
the attacker’s platform permanently and has physical access to that platform.
The attacker also controls the network between the target platform and
their platform. At the time of the attestation, the adversary has not been
able to extract attestation or sealing keys from their platform or any other
SGX processor.

The Relay Attack. The relay attacker can redirect the attestation requests
intended for the target platform to their platform, as shown in Figure 6.1.
This is a realistic attack for two reasons. First, in the SGX attacker’s model,
the adversary is allowed to control the OS and can hence easily redirect any
network request the target platform receives. Second, even if the attacker
cannot compromise the OS in the target platform, it might be able to exploit
some vulnerability of the untrusted application managing the enclave. The
exploit might allow the attacker to manipulate the application’s control
flow to redirect attestation requests to any platform they desire.
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6.3.2 Relay Attack Implications

Although relay attacks have been known for a long time [113], their
implications for modern TEEs like SGX have not been carefully analyzed.
Next, we perform the first such analysis.

The main consequence of attestation redirection is that it increases the
adversary’s ability to attack the attested enclave through side channels which
are a well-known limitation of SGX (see Section 6.2.2). In Figure 6.2, we
highlight two major classes of attacks: those that are only possible by first
performing a relay attack, which we denote as “enabled by relay”, and
those that can be done whether or not the attacker also does a relay attack,
which we call “independent of relay.”

Attacks Using Leaked Attestation Keys. Our first observation is that
attacks based on leaked attestation keys (e.g., ones obtained through the
Foreshadow attack [120]) are independent of relaying. If the adversary has
obtained a valid and non-revoked attestation key, they can emulate an SGX
processor on the target platform and obtain any secrets provisioned to it.

Physical Side Channels. One major benefit of the relay, from the
adversary’s point of view, is that it enables physical side-channel attacks
against application enclaves. Once a secret has been provisioned to the
attacker’s platform, they have as much time as they like to perform the
attack. Some examples of physical side-channel attacks are acoustic,
electric, and electromagnetic monitoring, which have been shown to be
both effective and inexpensive means to extract secrets from modern PC
platforms (see [114] for a summary of known attacks). Since the
adversary does not have physical access to the target platform, such
attacks are clearly not possible without relay. Hardening programs like
enclaves against physical side channels is difficult and currently an open
problem [114]. Therefore, developers cannot easily defend their enclaves
against physical side channels that are enabled by attestation redirection.

Privilege Escalation for Digital Side Channels. Another possible benefit of
relay attacks is that they may enable privilege escalation. In cases where the
adversary has only compromised the user-space application that manages
the enclave and not the OS, the application can redirect the attestation to
the attacker’s remote platform, where they control the OS as well. In such
cases, the relay enables digital side-channel attacks that require system
privileges. Several such attacks have been demonstrated against SGX [52,
15, 53].
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Figure 6.3: Example sequences of events. In Case A, the attack success is
independent of relay. In Case B, attestation redirection enables the attack.

Attacks that Depend on the Timing of Events. The third, and perhaps the
most subtle, implication of relay is that it can also enable software-based
side-channel attacks that would not be possible to launch on the target
platform due to the timing of certain events. These events include, but are
not restricted to, the provisioning of secrets to the enclave, the possible
disinfection of the target platform from malicious software, the discovery
of a new side-channel attack, and even the reduction of noise due to other
workloads.

We group the relative ordering of these events into two cases: A and B.
Case A covers event sequences that only lead to attacks that are independent
of relay, and Case B covers event sequences in which redirection gives extra
capabilities to the adversary. Below, and in Figure 6.3, we provide examples
of sequences belonging to these two cases:

Case A: Independent of Relay. A digital side channel is independent of
relay if the adversary could perform it on the target platform as well. An
example of such a case is shown in the timeline depicted in Figure 6.3,
where a new attack is discovered after secret provisioning but before the
target platform OS is disinfected.

Case B: Attack Enabled by Relay. Case B is reached whenever it occurs that
by using a side channel, the enclave is exploitable on the attacker’s platform
but not on the target platform. A timeline of such a case is shown in
Figure 6.3, where at the time of attestation and secret provisioning, the
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enclave is hardened against all known digital side-channel attacks (using
tools like Raccoon [77], ZeroTrace [122] or Obfscuro [29]). After secret
provisioning, the OS compromise is detected and cleaned. Later, a new side-
channel attack vector (that is not prevented by the tools used) is discovered.
If the adversary performed a redirection and the secret was provisioned to
the attacker’s machine, the new side channel is exploitable. Without the
relay, the attack is not possible.

6.3.3 Limitations of Known Solutions
Next, we review commonly suggested solutions and their limitations.

Trust on First Use. A common “solution” in the research literature is to
rely on trust on first use (TOFU) [123]. Simple TOFU solutions assume
that the OS is clean at the time of attestation or perform attestation only
immediately after fresh OS installation. Both of these approaches have
obvious security and deployment problems. OS re-installation is not always
possible, and trusting the OS, even if momentarily, is undesirable (and
violates SGX’s trust model).

SGX Attestation Variants. As we explain in Section 6.2.1, SGX supports
different variants of remote attestation. Unfortunately, none of these
schemes prevents relay attacks without some form of TOFU assumption.

1. The unlinkable EPID attestation scheme is based on group signatures,
and thus the remote verifier cannot distinguish between attestation
responses that are received from the expected target platform or the
adversary’s platform.

2. The linkable EPID attestation mode allows the remote verifier to check
if they have attested the same platform before, but the first attestation
protocol run is vulnerable to relay attacks, and therefore, the remote
verifier must assume TOFU.

3. The DCAP scheme allows corporations to operate their own local
attestation services after an enrollment phase. However, if the
adversary controls the target platform during the enrollment, they
can replace the enrolled platform identifier PPID with the identifier
of their own platform PPID’ and enroll the adversary’s platform
instead. Thus, also the DCAP variant scheme requires trust on first
use. In addition, the entire corporate key management system must
be trusted at enrollment time (and after it).
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Non-Anonymous Attestation. Because SGX’s attestation protocol support
anonymity features, like the EPID signature scheme, one may think that
relay attacks are caused by such privacy protection mechanism. However,
such reasoning is incorrect. Even if all anonymity features were removed
from attestation, the problem of relay attacks would still persist. The root
cause of relay attacks is that certified keys can be securely installed to
processors at the time of manufacturing, but the processor ownership by
private individuals or companies is established much later. Therefore,
common PKI mechanisms do not eliminate relay attacks – unless the
processor manufacturing and distribution model is completely changed
such that factories start to manufacture and certify customer-specific
processor batches on demand (which would be very expensive).

Other TOFU Variants. Research papers tend to use slightly different TOFU
variants. For example, the ROTE system [124] assumes fresh OS installation
at system initialization time, and for each used platform, it requires a local
administrator to input a credential to the enclaves. As another example, in
the VC3 system [26], enclaves generate a public/private key pair at the
time of trusted initialization, output the public key and seal the private key.
The public key can be sent to a trusted authority for certification, which
then enables clients to securely connect to enclaves. Both of these solutions
essentially avoid insecure attestation by pre-authorizing known enclaves
during a setup phase that is assumed trusted.

In general, TOFU solutions suffer from the following limitations:

1. OS re-installation: Forcing users or administrators to re-install the OS
is not always possible.

2. Manual configuration: Manual interaction tasks, such as an
administrator that needs to enter credentials to enclaves during
initialization, complicate platform enrollment, especially in
scenarios like data centers with many enrolled platforms.

3. Pre-defined enclaves: Solutions that only work with enclaves that are
known at the time of initialization are not applicable to scenarios like
cloud computing platforms where users need to install new enclaves
after platform installation.

4. Large temporary TCB: Modern operating systems have a large TCB,
and trusting the OS even temporarily is unideal.
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5. Online authorities: Solutions where a trusted authority needs to either
certify or revoke new enclaves typically require that the authorities
are online, which increases their attack surface.

6.4 PROXIMITEE
Our goal is to design a solution that addresses the above limitations of
previous solutions. In short, our solution should be secure (no TOFU
assumption, small TCB, no online authorities) and easy to deploy (no OS
re-installation, manual configuration, or pre-defined enclaves). In this
section, we provide an overview of our approach, outline possible use
cases, describe our solution in detail, and analyze its security.

6.4.1 Approach Overview
We propose a hardened SGX attestation scheme, called PROXIMITEE, based
on a simple embedded device that we call PROXIMIKEY. The embedded
device is attached to the target platform over a local communication
interface such as USB.

Our main idea is to use the combination of such a trusted device and
proximity verification to prevent relay attacks. In our solution, the
PROXIMIKEY device verifies the proximity of the attested enclave, and after
successful proximity verification, it facilitates the creation of a secure
channel between the remote verifier and the attested enclave.

After the initial attestation, the device periodically checks proximity to
the attested enclave. The established secure channel is contingent on the
physical presence of the embedded device on the target machine, and it
stays active only as long as the device is plugged in. The act of detaching the
device automatically revokes the attested platform without any interaction
with a trusted authority. Thus, our solution enables secure offline enrollment
and revocation.

To use our solution, enclave developers use a simple API that facilitates
communications between the enclave and the device.

Security Assumptions. In our solution, the PROXIMIKEY device is a trusted
component. We deem this choice reasonable since it implements only the
strictly necessary functions, and therefore, it has a significantly smaller
software TCB, attack surface, and complexity compared to a
general-purpose commodity OS. We assume that its issuer certifies each
embedded device prior to its deployment, and such certification can take
place fully offline.
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Concerning the security of the PROXIMIKEY device, we employ the same
adversary model introduced in Section 6.3 for enclaves. While the user’s
device and its private keys are never exposed to the attacker, another similar
device can be in the physical possession of the attacker, which has as much
time as they want to fully compromise it (run arbitrary code and extract
keys).

6.4.2 Example Use Cases
Our solution is targeted to scenarios where the benefits of more secure
attestation outweigh the deployment cost of a simple embedded device.
Here, we outline three example cases.

Datacenter. In our first example, we consider a cloud platform provider
that attaches PROXIMIKEY to a server in a specific data center and makes
the public key of the connected device known to the users of the service.
Our approach is particularly well suited to cloud computing models where
customers rent dedicated computing resources like entire servers. In such
a setting, our solution ensures that the cloud platform customer
outsources data and computation to a server that resides in a specified
location. Enforcing location may be desirable to meet increasing data
protection regulation that defines how and where data can be stored, even
if protected by TEEs such as SGX. Revocation (e.g., when a server is
relocated to another data center or function) can be realized by merely
detaching PROXIMIKEY.

Permissioned Blockchain. Our second case is a setting in which a trusted
authority initializes a set of validator nodes for a permissioned and SGX-
hardened blockchain. The trusted authority issues one PROXIMIKEY for each
organization that operates one of the validator nodes, which allows secure
attestation of the validator platforms. Organizations are free to upgrade
their computing platforms by attaching the PROXIMIKEY to a new platform
which automatically revokes the old platform without the need to interact
with a trusted authority. Furthermore, since PROXIMIKEY can only be active
on one platform at a time, such a deployment enables the authority to
control the identities used in (Byzantine) blockchain consensus processes.

HSM-Protected Keys. Our last case is the management of HSM-protected
keys from an attested enclave. Such deployment enables the secure and
flexible realization of various access control policies implemented as
attested enclaves. PROXIMITEE guarantees that only an enclave in the
proximity of the HSM can control its keys. Such a solution provides a high
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Figure 6.4: PROXIMITEE attestation: The remote verifier establishes a secure
channel to the PROXIMIKEY device that first attests the enclave and then
verifies its proximity.

level of protection because, at no point in time, the HSM keys are directly
accessible by the enclave (which may be vulnerable to side-channel
attacks) or by the untrusted OS.

6.4.3 Solution Details
Now, we explain the PROXIMITEE attestation mechanism in detail.

I. Attestation protocol. Figure 6.4 illustrates the attestation protocol that
proceeds as follows:

➀ The remote verifier establishes a secure channel (e.g., TLS) to the
certified PROXIMIKEY. An assisting but untrusted user-space
application facilitates the connection on the target platform, acting
as a transport channel between the remote verifier and the
PROXIMIKEY (and later also the enclave). As part of this first step,
the remote verifier specifies which enclave should be executed.

➁ The untrusted application creates and starts the attestation target
enclave.

➂ PROXIMIKEY performs the standard remote attestation to verify the
code configuration of the enclave with the help of the IAS server or
using a custom DCAP procedure (see Section 6.2). In the attestation
protocol, the device learns the public key of the attested enclave.
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Figure 6.5: Sliding window: for periodic proximity verification with three
different types of challenge-response latencies.

➃ PROXIMIKEY establishes a secure channel (e.g., TLS) to the enclave
using that public key.

➄ PROXIMIKEY performs a distance-bounding protocol that consists
of n rounds, where each round is formed by steps ➄ to ➇. At the
beginning of each round, PROXIMIKEY generates a random challenge
r and sends it to the enclave over the TLS channel.

➅ The enclave increments the received challenge by one (r + 1).

➆ The enclave sends a response (r + 1) back to the PROXIMIKEY over
the TLS channel.

➇ PROXIMIKEY verifies that the response value is as expected (i.e., r+1)
and checks if the latency of the response is below a threshold (Tcon).
Successful proximity verification requires that the latency is below the
threshold for at least k×n responses, where k ∈ (0, 1] is a percentage
of the total number of responses n.

➈ If proximity verification is successful, PROXIMIKEY notifies the remote
verifier over the TLS channel (constructed in step ➀). The verifier
starts using the PROXIMIKEY TLS channel to send messages to the
enclave.

II. Periodic Proximity Verification. After the initial connection
establishment, the PROXIMIKEY device performs periodic proximity
verification on the attested enclave. PROXIMIKEY sends a new random
challenge r at frequency f , verifies the correctness of the received
response, and measures its latency. The latest w latencies are stored in a
sliding window data structure, as shown in Figure 6.5.
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As elaborated in Section 6.5, there are three types of latencies in the
presence of relay attacks. The first type of response is received faster than the
threshold Tcon (green in Figure 6.5); these responses can only be produced if
no attack is taking place. In the second type of response, the latency exceeds
Tcon, but it is below another, higher threshold Tdetach (yellow); these are
sometimes observed during legitimate connections and sometimes during
relay attacks. And third, the latency is equal to or exceeds Tdetach (red);
these latencies are only observed while a relay attack is being performed.
Given such a sliding window of periodic challenge-response latencies, we
define the following rules for halting or terminating the connection:

• Successful window: no action. If at least k responses have latency
≤Tcon and none of the responses have latency≥Tdetach, the current
window is legitimate, and PROXIMIKEY keeps the connection active.

• Halt window: prevent communication. If one of the responses has
latency ≥Tdetach, we consider the current window a “halt window,”
and PROXIMIKEY stops forwarding data to the enclave until the current
window is legitimate again.

• Failed window: terminate channel. If two or more responses have
latencies≥Tdetach, we consider the current window a “failed window,”
and PROXIMIKEY terminates the communication and thus revokes the
attested platform.

6.4.4 Security Analysis
Attestation security. To analyze the security of our hardened attestation
mechanism, we must first define successful attestation. We say that the
attestation is successful when the remote verifier establishes a connection to
the correct enclave that i) has the expected code measurement and ii) runs
on the computing platform to which the PROXIMIKEY device is attached.

The task of establishing a secure channel to the correct enclave can be
broken into two subtasks. The first subtask is to establish a secure channel
to the correct PROXIMIKEY device. This is achieved using standard device
certification. We assume that the adversary cannot compromise the specific
PROXIMIKEY used. If the adversary manages to extract keys from other
PROXIMIKEY devices, they cannot trick the remote verifier into connecting
to a wrong enclave, as the remote verifier will only communicate with a
pre-defined embedded device.

The second subtask is to establish a secure connection from
PROXIMIKEY to the correct enclave. For this, we use proximity verification.
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PROXIMIKEY verifies the proximity of the attested enclave through steps ➄
to ➇ of the protocol. These steps essentially check two things. First,
through step ➆, whether the messages are received from the correct
enclave. This verification is performed by checking the correctness of the
decrypted message, and it relies on the assumption that the attacker
cannot break the underlying encryption – hence only the enclave that has
access to the key that was bound to the attestation could have produced a
valid reply. Second, through step ➇, whether the PROXIMIKEY and the
enclave are in each other’s proximity. This check relies on the assumption
that a reply from a remote enclave will take more time to reach the
PROXIMIKEY than a reply from the local enclave.

We evaluate the second aspect experimentally. In particular, we
simulate a powerful relay-attack adversary that is connected to the target
platform with a fast network connection. To consider the best case for the
adversary, we make several assumptions in their favor. For example, we
assume that they can instantly perform all computations needed to
participate in the proximity verification protocol. However, they cannot
break cryptographic hardness assumptions. We define the adversary’s
success as the event in which proximity verification succeeds with an
enclave that resides on the attacker’s platform, and we denote the
probability of such an event Padv . We define a legitimate success as the
event in which proximity verification succeeds with an enclave that resides
in the target platform and denote its probability Plegi t . In Section 6.5, we
show that it is possible to find parameters (n = 50, k = 0.3, and Tcon
= 186µs) that make proximity verification very secure
(Padv = 3.55× 10−34) and reliable (Plegi t = 0.999999977).

Revocation Security. To analyze the security of the periodic proximity
verification which we use for platform revocation, we must first define what
it means for the attacker to break the periodic proximity verification. The
purpose of the periodic proximity verification is to prevent cases where
the user detaches the PROXIMIKEY device from the attested target platform
and attaches it to another SGX platform before the previously established
connection is terminated. Since we consider an adversary who does not
have physical access to the target platform (recall Section 6.3.1), we focus
on benign users and exclude scenarios where the PROXIMIKEY would be
connected to multiple SGX platforms with custom wiring or rapidly and
repeatedly plugged in and out of two SGX platforms.

We define the periodic proximity verification as broken if the adversary
can manage to keep the previously established connection alive within a
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“short delay” after the PROXIMIKEY was detached from the attested target
platform. For most practical purposes, we consider a delay of 10 ms as
sufficiently short. We denote the adversary’s success probability in breaking
the periodic proximity verification as P ′adv . A false positive for periodic
attestation is the event where the connection to the legitimate enclave is
terminated, and the attested platform is revoked despite the PROXIMIKEY

being connected to the target platform. We denote the probability that this
happens during a “long period” as P ′f p. We consider an example period of
10 years sufficiently long for most practical deployments.

In Section 6.5, we experimentally show that revocation can be secure
(P ′avd = 3.55 × 10−34) and reliable (P ′f p = 1.6 × 10−4) while consuming
only a minor fraction of the available channel capacity.

6.5 Experimental Evaluation
In this section, we describe our implementation and evaluation.

6.5.1 Implementation
We implemented a complete prototype of the PROXIMITEE system. Our
implementation consists of two components: i) the PROXIMIKEY embedded
device prototype and ii) the PROXIMITEE enclave API which enables any
application enclaves to communicate with the PROXIMIKEY device and
execute the proximity verification protocols.

PROXIMIKEY. Our embedded device prototype is based on Cypress EZ-
USB FX3 USB 3.0 prototyping board that is equipped with a 32-bit 200
MHz ARM9 core. The board communicates with the target platform over a
native USB 3.0 connection that provides up to 5 Gbps of bandwidth. FX3
provides direct memory access (DMA) out of the box through its API for
efficient communication with the connected platform. We use the ARM
mbedTLS [62] cryptographic library for the TLS. The limited set of cipher
suites in our implementation uses 128-bit AES (CTR mode) for encryption,
AES-HMAC as the message authentication code, Curve25519 for Diffie-
Hellman key exchange, and SHA256 as the hash function. Our prototype
implementation is approximately 200 lines of code, and the code size of
the TLS library is around 3.6 KLoC.

PROXIMITEE Enclave API. The PROXIMITEE API for application-specific
enclaves is written in C++ using the Intel SGX API. The API uses the native
SGX crypto library for the TLS implementation, and it is around 200 lines
of code.
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6.5.2 Evaluation Focus: Internet Relay
For the purposes of our evaluation, we make the distinction between two
types of relay attacks. In the first type, the adversary redirects the attestation
over the internet to another platform that is under their physical control
and, therefore, in a different location. As we explained in Section 6.3.2,
such relay attack amplifies the adversary’s capabilities the most, as they
can now attack the attested enclave using physical side channels, they have
unlimited time to launch digital side channels, or they can wait for the
discovery of new attack vectors.

In the second type of relay attack, the adversary redirects the attestation
to another co-located platform, like another server on the same server
rack. In most cases, attestation relay to a co-located platform does not
improve the adversary’s chances of attacking the enclave because, typically,
the adversary has similar control over the co-located platform. The only
exception is privilege escalation in cases where the adversary has user
privileged on the target platform and system privileges on the co-located
platform.

Next, we focus on demonstrating that an inexpensive PROXIMITEE
prototype can be configured to prevent the first (and typically more
dangerous) type of relay attacks with very strong security and robustness.
Later, in Section 6.5.8, we discuss the second type of relay.

6.5.3 Experimental Setup
To demonstrate that PROXIMITEE prevents relay attacks (over the internet),
we performed two types of experiments. First, we tested the legitimate
attestation execution with PROXIMITEE and measured the
challenge-response latencies between our prototype and the target
platform. Second, we simulated a relay attack, where the adversary
redirects the attestation to another platform.

Assumptions and Optimizations. To consider the best possible case for
the adversary, we made several generous assumptions in their favor when
designing our experimental setup and post-processing our measurements:

1. Single network hop. Since we do not want to make any assumptions
about the precise network path that the relayed attestation needs to
travel, we connected the adversary’s platform to the target platform
via a direct 1-meter Ethernet cable, as seen in Figure 6.6. With such
a setup, our goal is to simulate the most direct connectivity and
the best possible latency that the adversary could achieve in relay
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Figure 6.6: Our experimental setup: consists of the PROXIMIKEY device
prototype, the target platform, the attacker’s platform, and the connection
interfaces between them.

attacks that take place over the internet. In most realistic attacks, the
adversary would need to relay the attestation over multiple network
hops, which increases the round-trip latency significantly.

2. Instant protocol computation. Since the adversary might have a faster
processor on their platform than the one we used in our experiments,
we simulated an adversary who is able to perform all computations
needed for the proximity verification protocol instantly. Instant replies
were simulated by fixing the randomness for the challenges and
having precomputed responses for that randomness on the attacker’s
machine.

3. Packet forwarding optimizations. Since the adversary controls the OS
on the target platform, they can perform software-based
optimizations to reduce the packet forwarding delay. We
experimented with several such optimizations. First, we tested the
standard ping tool, which gave a latency of around 380 µs for a
one-meter Ethernet connection. After that, we used the ping tool in
so-called flood mode and measured a reduced average network
latency of around 153 µs (command ping -s 300 -af). Flood
mode achieves faster round-trip time as it forces the OS to fill up the
network queue of the kernel. Based on these measurements, we
chose to simulate an attacker that fills the kernel’s network queues
(on both platforms) similar to the flood mode to minimize latency.
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We also tested other possible OS-level optimizations but did not
observe any material reduction in measured latencies, and thus, in
our experiments, we only use the kernel queue filling.

4. Infinitely fast network interface. Since the adversary’s platform might
have a faster network interface hardware than the one used in our
experiments, we chose to simulate an adversary that has an
infinitely fast network interface. In our experimental setup, both the
target platform and the adversary’s platform have identical network
interfaces. We assume (in favor of the adversary) that the
transmission time spent on the wire is negligible, and most of the
round-trip latency is due to processing in the network interface. This
allows us to simulate an adversary with an infinitely fast network
interface by first performing latency measurements and then, in a
post-processing phase, cutting down all the measured latencies by
half. Note that the target platform’s network interface cannot be
replaced by the attacker as they do not have physical access to it.

Experiments. We conducted our experiments on three SGX platforms:
two Intel NUC NUC6i7KYK mini-PCs and one Dell Latitude laptop, all
equipped with SGX-enabled Skylake core i7 processors and Ubuntu 16.04
LTS installed on them. To measure latencies, we used FX-3’s GPIO pins
that provide 100 nanosecond level accuracy. We performed a total of 20
million rounds of the protocol for normal attestations and simulated attacks
and measured the challenge-response latencies for each. We measure all
of them inside the EZ-USB FX3 code. For cross-validation, we tested the
PROXIMIKEY with a high-precision oscilloscope (8 Ghz Keysight Infinium)
and witnessed identical timing patterns.

6.5.4 Latency Distributions
The histogram in Figure 6.7 on the left represents the challenge-response
latencies in the legitimate proximity verification. The histogram on the
right shows latencies in a simulated attack (including a post-processing
phase where we reduce the adversary’s measured network latencies to half
to accommodate the assumption of the attacker’s infinitely fast network
interface).

As can be seen from Figure 6.7, the vast majority of the benign challenge-
response latencies take from 145 to 250µs (average 185µs, 95% of samples
are in between 150µs and 200µs). The vast majority of the round-trip times
in the simulated attack take from 200 to 750 µs (average 264µs, 95% of
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Figure 6.7: Latency distributions: for legitimate challenge-response rounds
(left) and simulated relay attack (right).

samples are in between 209µs and 650 µs). Hence, the average delay of
our simulated adversary is only 80µs. To put this into perspective, even the
highly-optimized network connections between major data centers in the
same region exhibit latencies from one millisecond upwards [125], which
is one order of magnitude more than in our simulated setup.

Besides the latency observed on the side of the embedded device, we
measured the time required to compute responses to received challenges
on the side of the target platform. We repeated these tests on three different
SGX platforms and observed results that varied from 6 to 10 µs. We also
measured if the computational load of the target platform influences the
time required to compute responses. Under maximum system load (all
8 cores busy), the maximum observed time increased to 20 µs. Under
moderate system load (1 or 2 cores busy), we experience no notable increase
in the required computation time.

6.5.5 Initial Proximity Verification Parameters
As explained in Section 6.4.3, the initial proximity verification is successful
when at least a fraction k of the n challenge-response latencies are below the
threshold Tcon. Now, we explain our strategy for setting these parameters
based on the above results.

There are five interlinked parameters that one needs to consider: (i)
the legitimate connection latency threshold Tcon, (ii) the total number of
the challenge-response rounds n, (iii) the fraction k, (iv) the attacker’s
success probability Padv that should be negligible, and (v) the legitimate
success probability Plegi t that should be high. We find suitable values for
these parameters in the following order:

1. We start with the threshold Tcon. The higher Tcon is, the higher the
legitimate success probability Plegi t becomes. On the other hand, a too-
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Figure 6.8: Parameter tuning: the attacker’s success probability Padv and
the legitimate success probability Plegi t for different numbers of rounds n
given a fixed k.

high value for Tcon also makes Padv , the attacker’s success probability,
high. Therefore, we are after a suitable value for Tcon that keeps Plegi t
high while minimizing Padv over a varied number of rounds n.

2. Based on such Tcon, we pick a fraction k such that it maximizes the
legitimate success probability Plegi t and reduces the attacker’s success
probability Padv .

3. Given Tcon and k, we evaluate Padv and Plegi t over a varied number of
rounds n and choose the minimum number of rounds that provides
the required probabilities since the fewer rounds, the faster the initial
attestation is.

Main Result. Figure 6.8 shows the legitimate enclave’s success probability
Plegi t and the attacker’s success probability Padv with different numbers of
rounds. Based on our experiments, we set Tcon = 186µs (see Figure 6.7),
the threshold fraction k = 0.3, and the number of rounds n = 50, which
yields a very high legitimate success probability Plegi t = 0.999999977 and
a negligible attacker’s success probability Padv = 3.55× 10−34.

6.5.6 Periodic Proximity Verification Parameters
For periodic proximity verification, we have two main requirements. First,
the attacker’s success probability P ′adv must be negligible. Recall that P ′adv
refers to an event where the device is detached, but the connection is
not terminated sufficiently fast. Second, the probability of false positives
P ′f p should be very low. P ′f p refers to an event where the connection is
terminated when the device is still attached. Next, we explain the three-
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step process to set up parameters Tdetach, w, and f for the periodic proximity
verification:

1. We find out a suitable latency Tdetach that defines the yellow or red
round in Figure 6.5. The yellow window defines the round of
challenge-response latency between Tcon and Tdetach, while the red
window defines a latency more than Tdetach. Hence, the probabilities
Pr[Tcon ≤ Llegi t ≤ Tdetach] = Pr[legi t ∈ yellow], and
Pr[Llegi t ≥ Tdetach] = Pr[legi t ∈ red] should be very low. Llegi t and
LA denote the latency of the legitimate enclave running on the
platform in proximity and the remote attacker platform’s latency,
respectively.

2. Based on the threshold Tdetach, we select a suitable sliding window
size w to minimize the attacker success probability P ′adv to a negligible
quantity.

3. We fix a suitable frequency f for the periodic challenges. A high f
value terminates the communication very fast, leaving very small
attacking window.

Main Result. Based on the above strategy, we set the periodic proximity
verification parameters as follows: Pr[A∈ success window] = P ′adv = P ′f n =
3.55× 10−34, Pr[legi t ∈ success window] = 0.999999977 and Pr[legi t ∈
failed window] = P ′f p = Pr[legi t ∈ red]2 = 1.6 × 10−4 and Tdetach =
205µs (see Figure 6.7). If at least two latencies above Tdetach are received,
the PROXIMIKEY terminates the connection and revokes the platform. The
average downtime due to false positives occurring during a connection of
10 years is around 2 minutes.

6.5.7 Performance Analysis
In addition, we evaluated the following two performance metrics:

1. Start-up latency. The initial proximity verification takes 2 ms. The
complete connection establishment, including attestation and TLS
handshake, takes less than 1 second.

2. Operational latency and data overhead. Our solution adds around
200µs of additional latency for TLS and transport over the native USB
interface of the FX3. The data overhead is around 80 bytes per packet
for the header and the MAC. Execution of the periodic PROXIMITEE
protocol with 83 rounds/second requires around 156.14 KBytes/s of
data which is only 2.4× 10−3% of the USB 3.0 channel capacity.
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6.5.8 Preventing Relay to Co-Located Platform
The primary purpose of our experimental evaluation was to show that our
inexpensive PROXIMITEE prototype can effectively prevent relay attacks
where the adversary redirects the attestation to another platform that is
under their physical control in a different location. Next, we discuss whether
PROXIMITEE can prevent attestation redirection to a co-located platform,
like another server on the same server rack.

If the two co-located platforms are connected through traditional
networking technologies like Ethernet (as in our experiments), our
evaluation already shows that such relay attacks can be effectively
prevented using a simple and inexpensive embedded device like our
prototype. However, in some modern data centers, computing platforms
are connected with faster interconnect technologies like InfiniBand
connections that can enable latencies as low as 7µs [126].

The ability to distinguish relay attacks depends on three key factors.
The first is the latency of the channel through which the relay is performed
(e.g., 7µs for InfiniBand). The second is the time required to compute
responses to challenges on the target platform (e.g., 6− 10µs in the SGX
platforms that we tested). And the third is how much variance the round-
trip times between the embedded device and the target platform have (e.g.,
10− 20µs in our USB 3.0 prototype). The local communication variance
and the response computation time should be less than the relay latency to
enable robust proximity verification.

We conclude that our simple prototype cannot prevent all possible
relays to co-located platforms when high-speed interconnect technologies
such as InfiniBand are used. To address such relay attacks, one needs a
faster and more accurate embedded device that exhibits less variance. For
example, PCIe-connected FPGAs can have latencies as low as 1µs [127].
Besides a better embedded device, one can also increase the number of
distance-bounding protocol rounds and reduce the success probability for
legitimate attestation Plegi t .

6.6 Addressing Emulation Attacks
We consider attestation key extraction from SGX processors difficult and
rare, in contrast to the previously considered relay attacks that require
only OS control or other malicious software on the target platform.
However, attacks like Foreshadow [120] have shown that extracting
attestation keys from SGX processors is not far-fetched. Although Intel has
the possibility to issue microcode patches that address processor
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vulnerabilities like Meltdown and the processor’s microcode version is
reflected in the SGX attestation signature, new vulnerabilities like the
ZombieLoad attack [128] may be discovered. Before microcode patches
are deployed, on some occasions, leaked but not revoked attestation keys
may be available to the adversary.

6.6.1 Emulation Attack

Adversary Model. We consider an emulation attacker has all the capabilities
of the relay attacker (cf. Section 6.3) and additionally has obtained at least
one valid (not yet revoked by Intel) attestation key from any SGX platform
but the target platform. The adversary might obtain an attestation key by
attacking one of their processors or by purchasing an extracted key from
another party.

The Emulation Attack. In the attack, the adversary uses a leaked attestation
key to emulate an SGX processor on the target platform. Since the IAS (or
any other attestation service) successfully attests the emulated enclave, it
is impossible for the remote verifier to distinguish between the emulated
enclave and the real one.

Emulation Attack Implications. The emulation attack allows the adversary
to fully control the attested execution environment and thus break two of
the fundamental security guarantees of SGX – enclave data confidentiality
and code integrity – and to access any secrets provisioned to the emulated
enclave. Since the OS is also under the control of the attacker, any attempted
communication with the real enclave will always be redirected to the
emulated enclave.

6.6.2 Boot-Time Initialization Solution
Proximity verification alone cannot protect against the emulation attacker,
as the locally emulated enclave would pass the proximity test. Therefore,
we describe a second hardened attestation mechanism that leverages secure
boot-time initialization and is designed to prevent emulation attacks. This
solution can be seen as a novel variant of the well-known TOFU principle,
with the main benefit of our solution over previous variants being that
it simplifies deployment and increases security. Additionally, when such
attestation is used in combination with our previously described periodic
proximity verification, our solution enables secure offline revocation.

Security Assumptions. Our security assumptions regarding the target
platform are described in Section 6.3. The only difference is that, in this
case, we assume that the UEFI (or BIOS) on the target platform is trusted.
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Figure 6.9: Boot-time initialization: The PROXIMIKEY uses a minimal kernel
Linux image to boot and load the PROXIMITEE enclave on the target platform
and seal a platform-specific secret to the PROXIMIKEY memory.

Solution Overview. Figure 6.10 illustrates an overview of this solution.
During initialization, which is depicted in Figure 6.9, the target platform is
booted from the attached device that loads a minimal and single-purpose
PROXIMITEE kernel on the target device. In particular, this kernel includes
no network functionality. The kernel starts the PROXIMITEE enclave, which
shares a secret with the device. This shared secret later bootstraps the
secure communication between PROXIMIKEY and the PROXIMITEE enclave.
The security of the bootstrapping relies on the fact that the minimal kernel
will not perform enclave emulation at boot time. The PROXIMITEE enclave
will later be used as a proxy to attest whether other (application-specific)
enclaves in the system are real or emulated and on the same platform.

Boot-Time Initialization. The boot-time initialization process is performed
only once. This process is depicted in Figure 6.9, and it proceeds as follows:

➀ The platform owner plugs PROXIMIKEY into the target platform,
restarts it to BIOS, and selects the option to boot from PROXIMIKEY.

➁ PROXIMIKEY loads the PROXIMITEE kernel and boots from it. The
PROXIMITEE kernel starts the PROXIMITEE enclave.
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Figure 6.10: PROXIMITEE boot-time attestation: After the boot-time
initialization (refer to Figure 6.9), the PROXIMITEE enclave executes a
local attestation with the verifier uploaded application-specific enclave.

➂ The user presses a button on PROXIMIKEY to confirm that this is a
boot-initialization process. This step is necessary to prevent an attack
where the compromised OS emulates a system boot.

➃ PROXIMIKEY sends a randomly generated key K to the PROXIMITEE
enclave.

➄ The enclave returns the sealed key S corresponding to the key K
(S ← Seal(K)) to PROXIMIKEY, which then stores the key and the
seal pair (K,S) on its flash storage.

➅ PROXIMIKEY blocks further initializations, sends a restart signal, and
boots the platform with the regular OS.

Attestation Process. After initialization, the target platform runs a regular
OS. The attestation process is depicted in Figure 6.10 and proceeds as
follows:

➀ PROXIMIKEY sends the seal S to the PROXIMITEE enclave that unseals
it and retrieves the key K. PROXIMIKEY and the PROXIMITEE enclave
establish a secure channel (TLS) using K.

➁ The remote verifier uploads a new application-specific enclave on the
target platform.

➂ The PROXIMITEE enclave performs local attestation (see Section 6.2)
on the application-specific enclave that binds its public key to the
attestation.
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➃ The PROXIMITEE enclave sends the measurement and the public
key of the application-specific enclave to PROXIMIKEY. PROXIMIKEY

establishes a secure channel to the application-specific enclave and
sends the measurement of the enclave to the remote verifier. The
remote verifier then approves the communication to the application-
specific enclave.

➄ The remote verifier checks that the measurement of the application-
specific enclave is as expected. If this is the case, it can communicate
with the enclave through PROXIMIKEY.

Following Communications. Similar to our previous solution, after the
initial attestation, all the communication between a remote verifier and
the enclave is mediated by the PROXIMIKEY which periodically checks
the proximity of the attested enclave and terminates the communication
channel in case the embedded device is detached.

6.6.3 Security Analysis and Implementation
In this attestation mechanism, the task of establishing a secure
communication channel to the correct enclave can be broken into three
subtasks. The first subtask is to establish a secure channel to the correct
PROXIMIKEY device. In our solution, this is achieved using standard device
certification. Recall that the adversary cannot compromise the specific
PROXIMIKEY used.

The second subtask is to establish a secure communication channel
from PROXIMIKEY to the PROXIMITEE enclave. The PROXIMIKEY shares
a key with an enclave that is started by the trusted PROXIMITEE kernel,
hence at a time in which the attacker could not emulate any enclave. The
PROXIMIKEY knows when secure initialization takes place, as the platform
owner indicates this by pressing a button – an operation that the adversary
cannot perform. The PROXIMITEE enclave seals the key during initialization.
Different SGX CPUs cannot unseal each other’s data, and therefore even
if the adversary has extracted sealing keys from other SGX processors,
they cannot unseal the key and masquerade as the legitimate PROXIMITEE
enclave.

The third subtask is to establish a secure communication channel from
the PROXIMITEE enclave to the application-specific enclave. The security of
this step relies on SGX’s built-in local attestation. An adversary in possession
of leaked sealing attestation keys from other SGX processors cannot produce
a local attestation report that the PROXIMITEE enclave would accept, and
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therefore the adversary cannot trick the remote verifier into establishing a
secure communication channel to a wrong enclave.
Comparison to TOFU. Our second attestation mechanism is a novel variant
of the well-known “trust on first use” principle. In this section, we briefly
explain the main benefits of our solution over common TOFU variants.

1. Smaller TCB size and attack surface. In the TOFU solution, the
standard and general-purpose OS needs to be trusted on first use, and
the CA needs to remain online for enrollment of new SGX platforms.
In our solution, a significantly smaller and single-purpose kernel
needs to be trusted on first use. Additionally, we require trust in the
BIOS (or UEFI). In our solution, the CA can remain offline when a
new platform is enrolled.

2. Reboot instead of re-install. Our solution requires that the target
platform is rebooted once from PROXIMIKEY. In most TOFU solutions,
the target platform requires a clean state which is difficult to achieve
without re-install, which makes deployment difficult.

3. Secure offline revocation. When boot-time initialization is combined
with the previously explained periodic proximity verification, our
solution provides an additional property of secure offline revocation
that requires no interaction with the CA. Such property is missing
from previous TOFU solutions.

Implementation. We implemented a complete prototype of our second
attestation mechanism. On top of our previous PROXIMITEE
implementation (see Section 6.5.1), the boot-time initialization solution
requires the PROXIMITEE kernel. We have modified an image of Tiny Core
Linux [129] and used it as the boot image for our boot-time initialization.
The image size of our modified Linux distribution is 14 MB (in contrast to
2 GB standard 64-bit Linux images build on the standard kernel). Our
image supports bare minimum functionality and includes libusb, gcc,
Intel SGX SDK, Intel SGX platform software (PSW), and Intel SGX Linux
driver. The PROXIMITEE enclave is a minimal enclave that uses a simple
serial library to communicate with the PROXIMIKEY and a local attestation
mechanism to attest any application-specific enclave.

6.7 Discussion and Related Work
Extension to other TEEs. Our approach could be applied to other TEEs as
well. The critical requirement for the TEE is that it must support
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programmable operations that can be executed sufficiently fast. One TEE
that meets these requirements is ARM TrustZone.

DRTM Proximity Verification. Presence attestation [130] enables proximity
verification of DRTM-based TEEs [6]. The TEE shows an image that is
captured by a trusted camera and communicated to a remote verifier. The
same approach cannot be used with SGX since it lacks a trusted path for
secure image output. Catching the cuckoo [131] uses timing side channels
to verify proximity with a TPM emulator. The TPM latency is in the order
of seconds, making it infeasible for any practical distance bounding.

6.8 Conclusions
Relay attacks have been known for more than a decade, but their
implications for modern TEEs like SGX have not been carefully analyzed.
In this chapter, we have presented the first such analysis and shown that
attestation redirection increases the adversary’s ability to attack an
attested enclave. We have also proposed PROXIMITEE as a solution to
prevent relay attacks using proximity verification. Our experimental
evaluation is the first to show that proximity verification can be made
secure and reliable for TEEs like SGX. As an additional contribution, we
have also presented a novel boot-time initialization solution for addressing
a stronger emulation attacker who has leaked attestation keys.



Chapter 7

Runtime Trust in Intel SGX

7.1 Introduction
While generally, one needs to trust the manufacturers with the
implementation of the CPU and, therefore, of the TEEs (e.g., SGX), trust
assumptions in the context of TEEs are more nuanced. In this chapter, we
distinguish between manufacture-time and deployment (runtime) trust
assumptions and further analyze those assumptions in the context of
TEE-based isolation, attestation, and sealing.

This distinction is maybe best illustrated through examples of sealing
and remote attestation. Sealing is typically supported by keys generated at
manufacture time that are stored only locally within a CPU. Sealing keys,
therefore, cannot be exported out of the CPU (not even to the manufacturer),
guaranteeing that the manufacturer cannot access the confidential data that
the user sealed. Thus, for sealing, the users need to trust the manufacturer
only at manufacture-time but not after deployment (i.e., at runtime). This
has real-world implications. If sealing is implemented as described above,
a manufacturer would not be able to provide access to users’ confidential
data, not even under subpoena.

Remote attestation, however, typically assumes trust in the
manufacturer at both manufacture time and runtime. This is due to the
manufacturers preserving the ability to revoke and certify CPUs after they
have been deployed.

A manufacturer that is honest at manufacture-time can therefore aim
to implement isolation, local attestation, and sealing such that these are
only vulnerable at manufacture time but not vulnerable at runtime. Intel
SGX follows the trust model described above and claims not to have access
to the CPU (root) sealing key [132, 133, 45].

In this chapter, we challenge this claim, and we describe an attack that
allows Intel to extract the CPU Root Sealing Key (RSK) as well as the Owner
Epoch Key (OEK) from any SGX CPU and, therefore, to unseal all data that
enclaves sealed on the victim CPU. In addition, this attack allows Intel to
brake local attestation and to compromise remote attestation with more
stealth than so far assumed.
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7.2 Attacker Model: Manufacture-Time vs. Post-
Deployment Compromise

We assume that Intel is not malicious or compromised during manufacturing.
What we mean by this is that the process as described in [45] is followed,
and the CPU is provisioned with two secret keys in its e-FUSES: a root
provisioning key (RPK) and a root seal key (RSK). The RPK is retained by
Intel, while the RSK is not. However, we consider an attacker who, after
CPU deployment, obtains access to the RPK. This access can be the result
of a compromise or collusion with Intel or a consequence of Intel being
compelled to provide access to the RPK (e.g., by a court order). In summary,
we assume that the RPK is not compromised at manufacture time but is
compromised post-deployment.

Finally, we assume that the attacker is able to run an enclave in the
victim CPU, which can obtain all key types from EGETKEY (cf. Section 7.3.1),
even if only in debug mode. As we explain below, on older CPUs without
support for SGX Flexible Launch Control (FCL), the attacker can get all key
types if they have at least a debug 1 launch enclave signed by Intel. On
newer CPUs with support for SGX FCL, the attacker just needs supervisor
privileges on the target system.

The goal of the attacker is to recover secrets that have been sealed by
client enclaves before the compromise of the RPK and to break local and
remote attestation on the target CPU.

Note that the attacks we describe next are based on publicly available
information, such as patents and manuals. Real implementation might
differ from the documents we analyzed, but nonetheless, our analysis still
serves as a warning of what can concretely go amiss in such deployments.

7.3 Background
7.3.1 Intel SGX EGETKEY
EGETKEY is one of the SGX ENCLU instruction’s leaf functions, and it is used
to generate cryptographic keys. As is publicly documented in Chapter 36 of
Volume 3D of [37], EGETKEY can be used to generate five key types, which
serve different purposes. These key types are used to seal secrets to
untrusted storage (PROVISION_SEAL_KEY, SEAL_KEY), control enclave

1The enclave can be the default one present on github https://github.com/intel/linux-
sgx/tree/master/psw/ae/le, but with an ATTRIBUTE_MASK, which allows for debugging. A
debug provisioning enclave works as well, but then the attacker needs supervisor privileges
as well.

https://github.com/intel/linux-sgx/tree/master/psw/ae/le
https://github.com/intel/linux-sgx/tree/master/psw/ae/le
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launch policies (EINITTOKEN_KEY), perform local attestation
(REPORT_KEY), and as a shared secret with Intel (PROVISION_KEY).
EGETKEY enforces several restrictions on which keys can be obtained and
in which context. Particularly, EGETKEY can only be executed by an SGX
enclave (also when in debug mode), and it only provides the SEAL_KEY
and the REPORT_KEY unless the calling enclave is provisioned with special
attributes. For instance, EGETKEY returns the PROVISION_KEY and
PROVISION_SEAL_KEY if and only if the calling enclave context has the
attribute ATTRIBUTES.PROVISIONKEY set to 1. An enclave with this
attributes set can be started only if at least one of the following two
conditions is met: i) it is signed by the same signer stored in the
IA32_SGXLEPUBKEYHASH MSR, ii) it is approved by an already running
launch enclave. On systems with Intel FCL enabled, this implies that
launching a (debug) enclave with ATTRIBUTES.PROVISIONKEY set can
only be done if the attacker has supervisor privileges. On systems without
FCL, the attacker either needs to have an arbitrary enclave signed by Intel
with ATTRIBUTES.PROVISIONKEY set, or one of the default launch
enclaves or provisioning enclaves with debugging enabled. With
debugging enabled, the adversary can then read the generated debug keys
from the enclave memory or let the debug launch enclave approve a
custom debug enclave with ATTRIBUTES.PROVISIONKEY set.

EGETKEY Algorithm. According to Intel’s patents [132, 133], EGETKEY
follows the recommendations of NIST SP 800-108 [134] for its key
derivation function (KDF). In constructing the KDF, NIST SP 800-108
requires a pseudo-random function (PRF). According to the patents [132,
133], the PRF chosen for EGETKEY is AES-CMAC [135]. The patents also
refer to a parent key used to key AES-CMAC. This parent key, according to
the EPID attestation whitepaper [45], is derived from the Root
Provisioning Key (RPK) and the current CPU security version number
(CPUSVN), which tracks the security version of the CPU logic (e.g.,
microcode, and XuCode [44]). The RPK is one of two keys that are present
on the CPU fuses [45], the second one being the root seal key (RSK). Each
CPU has its unique RPK and RSK, and according to public documents [132,
133, 45], Intel retains the RPK but does not know the RSK. Since by
knowing the RPK an attacker can derive the CPUSVN-specific key, unless
otherwise specified, for the rest of this chapter, we refer to the RPK as the
key used to key AES-CMAC (and not the actual key stored in the e-FUSES).

In short, EGETKEY runs AES-CMAC to derive keys. On each CPU, the
AES-CMAC is keyed with that CPU’s RPK, which is known to Intel (for every
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CPUSVN). Keys derived by EGETKEY are essentially the MAC tag obtained
over a message given to the AES-CMAC keyed with the RPK.

EGETKEY Parameters. Different key types, as introduced above, are
obtained by changing the fields included in the message given as input to
the EGETKEY AES-CMAC. Message fields can be, for example, an enclave
measurement, attributes, developer ID, and the CPU RSK, to name a few. If
a key type does not use a particular field, that field is replaced with a zero
bitstring of the same length. Note that two enclaves that ask EGETKEY for
the same key type do not, in general, get the same key. This is because
even if the fields used are the same, the fields’ content would, in general,
be different. For instance, even when asking for the same key type, a
debug enclave does not get the same key as its corresponding non-debug
enclave because the debug attribute field (which is part of the AES-CMAC
input message) is set to 1 (0) in the (non-)debug enclave.

Almost all of the message fields are known to an EGETKEY caller. There
are only two fields that are secret: the RSK, which is unknown to everyone
but the CPU; and the OWNER_EPOCH key (OEK), which is known only to the
platform owner. Therefore, an attacker that knows only the RPK still cannot
generate all of the keys that depend either on the RSK or the OEK. The only
key that does not depend on the RSK or the OEK is the PROVISION_KEY.

7.3.2 CMAC
In the following, we assume a standard implementation of CMAC as
described in [135]. We summarize the general notation used throughout
this chapter in Table 7.1. As we will need some AES-CMAC details in the
following sections, below we give the equation used to compute Ci
from [135] and depict in Figure 7.1 the main steps of the CMAC algorithm.

Ci = AESK(Ci−1 ⊕Mi) (7.1)

7.3.3 Recovering a Message Block from AES-CMAC
In this section, we consider an unusual attacker model for AES-CMAC.
Usually, the verifier is trusted, and its role in the protocol is to verify whether
a message tag is correct by knowing the key and the message. However, as
this is relevant within the EGETKEY context, we instead consider a scenario
in which an AES-CMAC verifier, with access to the CMAC key, can recover a
message block Mi by only knowing part of the message and its tag. Formally,
let us consider the scenario in which the verifier knows a MAC tag but, say,
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Table 7.1: Summary of notation

Symbols
& Operators Description

K The secret key used in the CMAC cipher
K1 The first subkey derived from K in CMAC
K2 The second subkey derived from K in CMAC
M Input Message to CMAC
Mlen Length of the message M
T len Output length of the CMAC
b Block size of the CMAC cipher
n Number of message blocks: n

.
= ⌈Mlen/b⌉

0s A zero bitstring of length s bits

X ||Y Bitstring resulting from the concatenation of
bitstrings X and Y

X ⊕ Y
Bitstring resulting from the
bitwise exclusive OR of bitstrings X and Y

Mi The i-th block of M , where each block is of length b bits

M∗n
The last block of M , which is a partial block
if Mlen is not a multiple of b

Mn

The last block used in the CMAC computation.
If M∗n is a complete block, Mn

.
= K1⊕M∗n ;

else, Mn
.
= K2⊕ (M∗n ||1||0

(nb−Mlen−1))

Ci
Intermediate value of the CMAC computation
after processing message block Mi as defined in equation (7.1).

AESK(X ) AES encryption of bitstring X with key K
AES−1

K (X ) AES decryption of bitstring X with key K
RPK Root Provisioning Key
RSK Root Seal Key
OEK Owner Epoch Key

does not know message block Mi of the message from which the tag was
computed. In other words, the verifier does not know Mi but knows all M j
for ∀ j ̸= i and i, j ∈ {k ∈ N : 0< k ≤ n}.

Note that the verifier is supposed to know the key K in order to verify
the integrity of the message. In the following, we refer interchangeably
to the verifier as verifier, attacker, or adversary, and we will assume that
T len is equal to b. For instance, this means that if AES-128 is used, then
T len, the length of the MAC tag, is also 128 bits (see Section 7.3.2 for the
definition of the notation used in this section).
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Figure 7.1: Figure from [135] depicting the two cases for CMAC
computation. The case on the left occurs if the message length is a multiple
of the block size; otherwise, the case on the right is used.

We will start by isolating Mi from equation (7.1), which results in the
following equation:

Mi = AES−1
K (Ci)⊕ Ci−1 (7.2)

where with AES−1
K we denote the AES decryption with key K . Note that

this is possible because AES can be inverted, that is, AES−1
K (AESK(x)) = x .

As can be seen in equation (7.2), Mi depends on Ci and Ci−1. To start with,
it should be noted that the verifier can trivially compute Ci−1 by performing
AES-CMAC with equation (7.1) up until index i−1. This is because this part
of the computation only depends on K and the message blocks M j<i , all of
which are known by the attacker in our scenario. However, the adversary
cannot continue with the normal AES-CMAC computation since to compute
Ci from equation (7.1), besides Ci−1, they would need to know Mi , which
is the message block they are trying to recover.

To compute Ci , we can isolate for Ci−1 in equation (7.1). This results in
Ci−1 = AES−1

K (Ci)⊕Mi , from which we obtain the following equation by
incrementing the index by one:

Ci = AES−1
K (Ci+1)⊕Mi+1 (7.3)

Essentially, this equation allows us to compute AES-CMAC backwards.
Note that Ci in this equation depends on Mi+1, which is known by the
attacker, and on Ci+1, which by recursion depends on all M j>i+1 and on Cn
which is the MAC tag (since T len = b). Therefore, iterating from the MAC
tag backwards, the attacker can use equation (7.3) to compute Ci and then
plug it into equation (7.2) together with Ci−1 to obtain Mi , the block that
was unknown at the beginning.
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Figure 7.2: Representation of the steps used to recover a block message
Mi from an AES-CMAC tag. The blue arrows are computed from the first
message block towards the middle, iterating over the blue message blocks
with equation (7.1). The red arrows are computed from the end (the
MAC tag) towards the middle, iterating over the red message blocks with
equation (7.3). By combining these two steps, we obtain Mi .

Figure 7.2 visualizes the computation performed to recover Mi . Overall,
this attack only requires the adversary to obtain one AES-CMAC MAC tag
for the message for which they want to recover the missing block.

So far, we assumed that the unknown bits to be recovered were perfectly
aligned in a message block Mi . In Section 7.4, we discuss how the attack
generalizes when this is not the case.

7.4 Special Cases for Message Recovery
In this section, we discuss how the AES-CMAC block recovery described in
Section 7.3.3 can be generalized to the case in which the unknown b bits
are not perfectly aligned with an AES-CMAC message block.

Formally, let us assume that the attacker does not know both the last m
bits of Mi−1 and the first b − m bits of Mi , for 0 ≤ m < b. Using
equation (7.1), the attacker can only compute up to Ci−2, while using
equation (7.3) they can only compute until Ci+1. The attacker now needs
to brute force the missing bits. However, they just need to brute force
2(min(m,b−m)) bits instead of 2b bits. Note that if AES-128 is used, in the
worst case, this reduces the number of tries from 2128 to 264.

To explain why, let us assume, without loss of generality, that m< b−m.
Now the attacker can compute all the possible Mi−1, and therefore all the
possible Ci−1, just with 2m tries. After Ci−1 is known, Mi can be derived
with the method described in Section 7.3.3. However, among the resulting
Mi , not all of the bits known to the attacker will match, therefore revealing
that the guess made for the m bits of Mi−1 was wrong. Note that there could
be multiple guesses for which the known bits of Mi match. To filter out
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those cases, we can use a second MAC tag computed over a message that
only differs from the first one on at least one known bit. Now the adversary
can use the previous valid guesses to compute the AES-CMAC tag over the
second message. If the adversary computed tag matches the actual tag, the
adversary knows that the guessed bits are correct.

7.5 Meet-in-the-Middle Attack on EGETKEY
7.5.1 Extracting the Root Seal Key
To extract the RSK, the attacker runs an enclave on the victim CPU (in
production or in debug mode), which calls EGETKEY and outputs the
PROVISION_SEAL_KEY to the attacker. We choose to call EGETKEY such to
output PROVISION_SEAL_KEY since, in this call, the attacker knows all the
inputs to EGETKEY except the RSK. Namely, EGETKEY calculates an
AES-CMAC over its input (which also includes RSK) and outputs the
PROVISION_SEAL_KEY as the AES-CMAC tag. The key that keys the
AES-CMAC is derived from the Root Provisioning Key (RPK), which the
attacker also knows.

In other words, the attacker knows the AES-CMAC key, the AES-CMAC
tag, as well as the entire MAC input except for the 128 bits of the RSK.
Hence, all the prerequisites to recover RSK from the AES-CMAC message,
as described in Section 7.3.3, are satisfied. An attacker with access to the
RPK (such as Intel) can therefore recover the RSK from any
PROVISION_SEAL_KEY (even a debug one) and unseal any data from the
target CPU.

7.5.2 Extracting the Owner Epoch Key
A similar procedure as described in the previous section can be followed
to recover the OEK. However, as opposed to the RSK, there is no call to
EGETKEY in which the only unknown message block to the attacker is the
OEK. All the EGETKEY calls that take as input the OEK also include the
RSK. The attacker can therefore extract the OEK only if they have already
recovered the RSK.

Namely, to extract the OEK, the attacker can run an enclave that outputs
two keys: the PROVISION_SEAL_KEY and then the SEAL_KEY 2. The attacker
first extracts the RSK from the PROVISION_SEAL_KEY and then, with the
knowledge of RSK, extracts the OEK from the SEAL_KEY, following the steps
from Section 7.3.3.

2The REPORT_KEY and the EINITTOKEN_KEY work just the same, as they also both depend
on the RSK and OEK.
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7.6 Implications of the Attack
In this section, we discuss the implications of an attacker leaking the RSK
and/or the OEK on a target CPU. Note that by attacker, we refer to an
attacker according to our attacker model (cf. Section 7.2), which among
other things, knows the RPK and can execute code in the target system.

7.6.1 Breaking Sealing
Enclave sealing keys depend on both the RSK and the OEK of the CPU on
which the enclaves run. If the attacker has leaked both RSK and OEK, it can
unseal the secrets of all enclaves that ran on the victim CPU. This breaks the
confidentiality of secrets stored by enclaves that might have run before the
attack was even executed. The SEAL_KEY can be configured with several
different fields, and thus, realistically, the attacker would also need to know
the source code of the enclave for which they are trying to unseal secrets
(if those parameters were not stored alongside the sealed blob). Note that
if the enclave code is stored in the victim system, or if the target is well
known, this should not be too challenging for the attacker. In general, any
secret previously sealed on the CPU for which the attacker has leaked the
RSK and OEK should be considered compromised.

7.6.2 Breaking Local Attestation
Local attestation relies on the REPORT_KEY, which depends on both the RSK
and the OEK. An attacker that knows the latter two keys is able to generate
valid MAC tags for arbitrary local attestation reports. Thus, this attacker is
able to pass local attestation despite their code not running in SGX or even
on the same CPU. The capability to fake local attestation completely breaks
any SGX guarantee. For example, the attacker can fully emulate an enclave
and easily pretend to be executing with SGX protections to other legitimate
local enclaves. As a consequence, this allows to also fake remote attestation,
as remote attestation relies on local attestation between the enclave to be
attested and the quoting enclave. Note that this attack is permanent: the
RSK cannot be updated (although the OEK can), so simply updating the
microcode does not prevent this attack. The last statement further implies
that even if a microcode update could prevent the attacks of Section 7.5,
the attacker could still first downgrade to an older microcode and then run
on the newer one while still retaining the correct RSK and OEK.

7.6.3 Breaking Remote Attestation
Knowledge of the RSK can be used to obtain the PROVISION_SEAL_KEY. The
PROVISION_SEAL_KEY is used by the Provisioning Enclave and the Quoting
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Enclave to, respectively, seal and unseal the current private EPID key. Hence,
by compromising the RSK, the attacker can gain knowledge of the current
EPID private key on the victim CPU. This allows the attacker to fake remote
attestation, thus completely compromising new enclaves that are executed
on the target system. This is because the attacker would be able to emulate
the enclaves and then provide a legitimate remote attestation quote to
the remote verifier, albeit the enclaves attested are actually not executing
within an SGX environment.

Note that if the CPUSVN of the system is updated, the old EPID private
key becomes invalid. To make the attack persistent, the attacker needs to
be present on the victim system after a system update to unseal the new
private EPID key.

Although it might not be surprising that Intel can manipulate remote
attestation by, e.g., falsely attesting an enclave/CPU, the above attack is
much more stealthy and applies both to unlinkable and linkable EPID
attestations.



Chapter 8

Runtime Trust in AMD SEV-SNP

8.1 Introduction
Just like in Intel SGX, the attestation mechanism used by AMD also implicitly
requires runtime trust in AMD. In the following, we describe how AMD can
abuse this trust to compromise a deployed CPU TEE. For this analysis, we
assume the same attacker model described in Section 7.2.

8.2 Background
AMD SEV-SNP relies on a co-processor, known as the PSP, to enforce its
properties. Among its responsibilities, the PSP sets up and manages VM
memory encryption and signs attestation reports. The VMs interact with
the PSP through the hypervisor, which acts as an untrusted channel in the
communication between VMs and PSP.

When the memory pages of a VM have been set up by the hypervisor, the
hypervisor calls the SNP_LAUNCH_UPDATE function of the PSP. This finalizes
the memory of the VM, and from that point on, the VM memory is protected
from the hypervisor and other VMs by the encryption mechanism managed
by the PSP. As part of SNP_LAUNCH_UPDATE, a special page of the VM is
initialized by the PSP containing key material that can be used by the VM
to establish a secure channel with the PSP.

Two keys are relevant for the runtime security of a SEV VM: the VCEK
key and the VEK key. The VEK is generated at random by the PSP for each
VM when the VM is started up and is used for VM memory encryption.
The VCEK is instead used to sign the attestation report of the VM. The
VCEK is a platform key – it does not depend on any VM measurement. The
VCEK depends on secret values fused on the chip and on the TCB_VERSION
number. The values that influence the VCEK are reported in Table 8.1.

8.3 Attacks and Implications
AMD can pursue (at least) two avenues to compromise a system at
runtime, both of which are based on compromising the VCEK. If the VCEK is
compromised, a VM can be launched without memory encryption while at
the same time making a remote verifier believe that such memory
encryption is in place. Without memory encryption, a malicious hypervisor
can trivially leak the contents of the VM (and even modify them).
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Table 8.1: Values that influence the VCEK key. Taken from [47, p. 18]

Bits Field Description

63 : 56 MICROCODE Lowest current patch level of all cores

55 : 48 SNP
Version of the SNP firmware
Security Version Number (SVN) of SNP firmware

47 : 16 - Reserved

15 : 8 TEE
Current PSP OS version
SVN of PSP operating system

7 : 0 BOOT_LOADER
Current bootloader version
SVN of PSP bootloader

The first avenue relies on the fact that the TCB_VERSION number only
contains the SVN of the PSP firmware and not an actual measurement of it.
AMD can release a PSP firmware that launches SEV VMs in debug mode
while at the same time not reporting this flag as set to the user. Another
alternative would be to add a hidden function in the PSP that reveals a VM’s
VEK to the hypervisor. Note that since the PSP firmware version number is
the same as the currently installed PSP firmware in the platform, the same
VCEK is generated both with the benign and compromised PSP firmware.
Thus there is no way for a verifier to distinguish these two cases based on
attestation alone.

The second avenue relies on the current mechanism used to verify the
authenticity of the VCEK. Particularly, in the current mechanism, the user
needs to contact the AMD KDS server giving as argument the platform ID
and the TCB_VERSION desired. The AMD KDS then replies with a certificate
chain from an AMD root key to the public key of the VCEK associated with
the given platform and TCB_VERSION. As AMD is able to generate every
public key for a given platform, this avenue relies on the assumption that
the related VCEK private key is also generated as part of the process. The
internal mechanisms of how this process is implemented are not published,
so it could be that the public key is generated without having access to the
private key (e.g., an HSM that only outputs the public key could be used).
However, if AMD can generate access to the private VCEK key, they can also
trivially fake attestation if they become malicious at runtime.

Note that already running VMs can also be compromised even if they
were instantiated by an uncompromised PSP firmware. This can happen if
the VMs are deployed with VM migration enabled (something that is likely
common in a cloud deployment). Then a VM migration can be started by
the cloud provider to migrate the VM from a platform with a benign PSP
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firmware to a platform with a compromised PSP or for which the VCEK is
known. During the migration then either the VEK would be revealed by
the malicious firmware, or the VM can be migrated to an emulated SEV
environment that still passes attestation (given the adversary’s knowledge
of the VCEK in the new platform).









Chapter 9

Closing remarks

In this chapter, we summarize the main results of the thesis and discuss
how future work can build on them to design more secure trusted execution
environments (TEEs).

9.1 Conclusions
Allowing privileged software to manage some aspects of TEE execution
is an appealing design decision. In principle, it allows the reduction of
the software that has to be included in an enclave’s TCB. For example,
if the OS is in charge of memory paging, a complex software task, the
enclave does not need to include any software to manage it itself. This
separation also minimizes the changes that developers have to perform on
their codebases to adapt to the new technology – the interface with the
system remains very similar, and thus the integration is almost effortless.
However, both previous work and the results of this thesis show that we
lack an understanding of how a privileged attacker can abuse its capabilities
to compromise TEEs. In this thesis, we contributed to this understanding
in four main directions. In terms of data confidentiality, we showed in
Chapter 3 that frequently issuing interrupts can lead to the CPU operating
in an often understudied regime. In this regime, where the pipeline is
frequently flushed, instructions exhibit timing characteristics that were not
seen before and that could not be leveraged by unprivileged attackers. We
showed how these timing characteristics lead to side channels that can
extract cryptographic keys even from (supposedly) side-channel resistant
libraries.

TEEs also aim at providing code confidentiality. Code confidentiality
is often overlooked, but it is an important feature enabled by TEEs, as
it is challenging to achieve it with other techniques. In Chapter 4, we
developed a methodology to study to what extent they actually provide
these guarantees in both Intel and AMD architectures. Perhaps surprisingly,
we concluded that interpreted code is generally leakier in TEEs compared
to executing instructions natively. We also note how this leakage is possible
thanks to the capabilities afforded to a privileged attacker and would be
considerably less otherwise.

As both of these previous attacks leverage the ability of the attacker
to frequently send interrupts, we explored in Chapter 5 to what extent
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AEX-Notify, a new Intel architecture extension, hampers these attacks. The
proposal does not fundamentally reduce the capabilities of the attacker
but only makes the enclave aware of a potential attack. While this is a
step in the right direction, our analysis shows that it remains to be seen
(based on actual implementations) to what degree this actually prevents
interrupt-based attacks against Intel SGX.

In terms of how a privileged attacker can affect attestation, we analyze
in Chapter 6 the impact that relay attacks have on the capabilities of the
attacker. We show that relay attacks have the potential to enable physical
attacks even if the attacker does not otherwise have access to the target
platform. Particularly, the attacker can spend many resources physically
compromising the die of one CPU and compromise deployments by
redirecting execution on that CPU. Note that such expensive attacks are
generally limited to one CPU, but relay attacks allow to amortize the cost
by always allowing to redirect execution to the compromised CPU. To
mitigate these attacks, we proposed ProximiTEE, which leverages
proximity verification with a device connected to the target platform to
prevent attacks.

Finally, in Chapter 7, we showed that current execution protocols
implicitly assume runtime trust in the manufacturer, even if they often
claim otherwise. We show how Intel can abuse its attestation protocol at
runtime in Chapter 7 and how similar considerations apply to AMD SEV as
well in Chapter 8. Particularly, these attacks work on the assumption that
the manufacturers are in a more privileged position to extract CPU secrets
that even they should not have access to. These attacks show that
attestation protocols should be designed to take these threats into account.

9.2 Future work
In the following, we investigate three main directions that we believe should
be explored to chase more secure TEE systems.

9.2.1 Exploring Further Attacker Avenues
As shown in Chapters 3 and 4, a privileged attacker can leverage many
system interfaces to compromise a TEE, such as controlling interrupts and
page table entries. However, other low-level OS interfaces could be further
explored. As an example, albeit not explicitly, the OS has indirect control
over the data placement in the cache and when and whether the cache gets
flushed. Physical attackers [136] can further install cache-coherent devices
in the system, which could further enhance the resolution of cache attacks
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to levels not seen before. These attacks could even leverage the scale of
data centers and their tendency to migrate VMs or expose memory between
different machines. Our understanding of how the hypervisor and OS can
impact enclaves in large-scale deployments is still quite limited, and, as this
thesis has shown, it could be abused by the attacker in unexpected ways.

9.2.2 Decreasing the Capabilities of Privileged Attackers
As we discussed throughout the thesis, one of the main difficulties in
protecting TEEs is due to the capabilities afforded to the attackers and
their implicit control over the enclave environment. As discussed, this
helps in reducing the TCB. Nonetheless, we believe that there is a potential
for designs to offload some of the management tasks to the attacker while
at the same time limiting its capabilities. For instance, designs where
system performance is sacrificed in favor of a more restrictive TEE could
be explored. These designs could remove or delay system-level capabilities
until the enclave is done executing in at least some of the CPU cores.
Further work is necessary to evaluate whether these proposals are effective
or even worth paying the performance price.

9.2.3 Susceptibility to Side Channels
In current designs, as discussed in Chapters 3 and 4, the responsibility to
protect against side channels is left to the developer. However, carefully
accounting for side channels in software is deeply linked to the concrete
hardware implementation. Albeit constant time code proposals help
alleviate the problem, as discussed in Section 3.8, they are often
impractical. Future TEE architecture could account for side channels in
hardware and provide a more convenient ISA to developers to avoid them,
if not in all execution contexts, at least inside the enclaves.

9.2.4 Attestation Enhancements
In Chapters 6 to 7, we discussed how current attestation protocols are
unable to provide guarantees with respect to relay attacks and still require
runtime trust in the manufacturer. While we proposed an enhancement to
the attestation with ProximiTEE in Chapter 6, we believe that future
attestation protocols should ship with relay prevention. More importantly,
future protocols should do away with having to trust the manufacturer at
runtime. There are several challenges in designing such protocols,
particularly how to guarantee the authenticity of the key upon TCB
updates, but we believe that tackling these problems can only enhance the
security of future TEE deployments.





Appendices





Appendix A

Frontal Attack

A.1 Responsible Disclosure
We notified the Intel PSIRT on February 21 2020, about the Frontal attack.
We sent them an initial report of the Frontal attack and a proof of concept
for the vulnerabilities we identified. They informed us on April 22 that
their best practices [65] already suggest avoiding secret-dependent
branching, and therefore our attack is considered out-of-scope for their
SGX libraries. In particular, they stated that the balanced branches of the
IPP Crypto library we attack in Section 3.5.1 are not used for
secret-dependent operations in the SGX architectural enclaves and hence
do not pose any security implication. The vulnerability shown in
Listing 3.1 was reported to the mbedTLS team, which promptly fixed it.
The vulnerability was also described in a 2017 paper [16] and was still
unknown to the developers.

A.2 Data-Oblivious Execution
Resilience against side-channel attacks is often a desired security property
when implementing software. This property is particularly important for
libraries and applications that operate on secret and sensitive data on a
system controlled by the attacker. Side-channel attacks exploit
secret-dependent variations of the program execution. These variations are
generally of two types: control-flow-dependent and data-dependent.
Control-flow secret dependencies are present whenever the control flow of
an application depends on confidential information. Data dependencies
manifest when latency or resources utilized depend on the input data. For
example, when memory accesses at different addresses are performed
based on some secret. Countless attacks have exploited these types of
dependencies in the past [2, 137, 96], targeting in particular cryptographic
libraries, as extracting secret keys handled by these libraries breaks any
security guarantee built on top of them. Data oblivious execution defends
against side-channel attacks by removing the two dependencies mentioned
above. This eliminates any variation in program execution that would be
potentially observable by the attacker. There are two ways to obtain a
data-oblivious executable – first, writing it directly in low-level assembly
code; second, by performing an automatic transformation at compile time



170 A Frontal Attack

from a higher-level language. Note that writing the code in a higher-level
language in a data-oblivious way and then simply compiling it might
reintroduce data or control flow dependencies at the binary level.

Several techniques for compiling and transforming code from an
arbitrary high-level language to data-oblivious code have been
proposed [77, 138, 139, 140, 64]. One of the most complete constant-time
transformations for SGX is Raccoon [77]. It removes any control flow and
most data dependencies by transforming secret-dependent branches into a
decoy and a real path that contain similar instructions. At run time, both
paths are executed, allowing only the real one to modify memory by
carefully applying the conditional move instruction (cmov). Raccoon runs
on SGX enclaves and uses SGX’s memory protections to ensure
confidentiality against an attacker that can otherwise read arbitrary
locations of memory.

A.3 Measurement Details
We made several changes from stock SGX-Step [67], primarily aiming to
reduce measurement noise as much as possible. In terms of functionality,
we added the possibility to measure performance counters alongside
instructions’ timings. We identified four major sources of noise: the OS,
variability in the APIC timer, unpredictability of shared resource state, and
enclave creation offset noise. We discuss how we addressed each of these
in the following paragraphs.

The OS is a source of noise as it needs to run the scheduler on each core
to decide which tasks to execute. If the scheduler runs in between the start
of a measurement and its end, the measurement will inevitably be longer.
Moreover, running any OS function while we single-step can sometimes
evict part of the enclave memory from the cache, thus forcing the enclave
to fetch it again when it is resumed. This also happens when the scheduler
executes on the sibling core. As recommended in the original SGX-Step
framework, we run the code in its own isolated core to reduce this noise.
However, this alone stops neither the scheduler nor the other cores from
interrupting the isolated core. We observed that disabling watchdogs at
boot and disabling the graphical user interface tends to reduce the noise
produced by the OS, albeit it does not eliminate it completely.

In stock SGX-Step, the APIC timer is set in the aep_cb_func. The
aep_trampoline then executes and resumes the enclave. Various
conditions can create variability between the time at which the APIC timer
is set and the time at which the enclave resumes. For instance, sometimes,
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Figure A.1: Distribution of the instructions of Figure 3.5 across different
runs, split by their alignments. This figure highlights how different enclave
runs exhibit a shift in the mean of their instructions’ distribution, and hence
distributions are not directly comparable between runs.

the aep_trampoline code page or some of the data it uses might not be
present in the cache. We addressed this variability by setting the APIC
timer from the aep_trampoline function with a value passed from the
aep_cb_func function and by serializing the instruction stream (using
CPUID) just before setting the timer. Interestingly, while debugging for this
source of noise, we observed that we were never able to interrupt in
between fused macro-instructions as these seem to be treated atomically
by the CPU, as also observed in [61].

The third source of noise stems from the difference in the
microarchitectural state in-between measurements. While we could not
completely eliminate this source of noise as we have no direct view of the
microarchitecture, we were able to reduce it significantly. The most
effective change in this regard was obtained by linearizing the code of the
aep_cb_func so that there is no mis-speculation in between single steps
and the function always has the same cache footprint. Even with this
change, we observed that instructions that cross a virtual page boundary
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1 loop_start:
2 mov (%rcx, %rdx, 8), %rax
3 xor %r9d, %r9d
4 cmp %rsi, %rax
5 setb %r9b
6 sub %rsi, %rax
7 mov %rax, (%rcx, %rdx, 8)
8 mov (%rdi, %rdx, 8), %r8
9 mov %r9, %rsi

10 cmp %r8, %rax
11 adc $0x0, %rsi
12 sub %r8, %rax
13 mov %rax, (%rcx, %rdx, 8)
14 add $0x1, %rdx
15 cmp %rdx, %rbp
16 jne loop_start

Listing A.1: Exploited for loop in the mbedTLS library’s mpi_montmul
function (compiled on gcc 7.5.0 with -O3).

remained noisy. To account for this, we remove these measurements from
the trace when possible. Note that the attacker can easily tell if an
instruction crosses the page boundary as the access bit of the new page is
set by the CPU.

Finally, while validating these changes, we noticed a source of noise
across enclave creations, whose effects we illustrate in Figure A.1. The
figure shows the measurement of the movs from Figure 3.5 across enclave
creations. As can be seen, the distributions remain bimodal, but the
position of the modes across creations changes. However, the relative
position between the modes stays the same: the mov at alignment 0x6 is
slower than that at 0xe on both runs. While we never observed modes
shifting more than 200 cycles, this shift is still large enough such that, for
instance, the distribution of nop instructions could overlap with the
distribution of multiplication instructions from different runs. Given this
shifting between enclave creations, we concluded that instructions’ timings
are only comparable within the same enclave.
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1 loop_start:
2 mov (%rax), %rcx
3 sub $0x8, %rax
4 mov %rcx, %rdx
5 shl $0x3f, %rcx
6 shr $0x1, %rdx
7 or %rdi, %rdx
8 mov %rcx, %rdi
9 mov %rdx, (%rax + 8)

10 cmp %rax, %rsi
11 jnz loop_start

Listing A.2: Exploited for loop in the mbedtls_rsa_gen_key function of
the mbedTLS library.

A.4 Outside Intel SGX
A question remains on whether these effects manifest only while executing
code inside an SGX enclave or whether they are present also while running
a program outside of SGX. Since we cannot send interrupts fast enough
during normal execution (outside SGX), we decided to simulate the effect
of the interrupts by modifying the code in Listing 3.2 such that each mov
triggers an exception. We handle the exception and measure the time it took
to execute it, and then resume the program execution from the instruction
after the one that triggered the exception. Note that exceptions are handled
very similarly to interrupts, with the key difference that the instruction that
is currently executing can retire when an interrupt is triggered, while it
needs to be discarded when an exception is raised.

We observed that timing differences between instructions in the two
branches were less pronounced than when the code was run within SGX.
Nonetheless, we were able to observe a (small) correlation between the
exception handling time of single instructions and the branch being
executed. This correlation hints that the effects are not only present when
interrupting enclaves but would also manifest when interrupting
applications if we had a fast enough interrupt timer.





Appendix B

Code Leakage

B.1 Responsible Disclosure
On 2 November 2022, we disclosed our findings related to Chapter 4 to
the following companies promising code confidentiality in TEEs: Veracruz
(ARM) [23], Edgeless [24], Enarx [22], and Scone [25]. Edgeless
acknowledged receiving our report but did not take any further steps.
Enarx responded that they are researching mitigations, while Scone told us
they are working on mitigating the reported issues. Veracruz responded
that side channels are out of scope in their attacker model. Nonetheless,
they are working on clarifying their documentation about the risks related
to code confidentiality in TEEs.

B.2 x86 ISA Instruction Count
We focus only on the 64-bit version of the x86 architecture when creating
candidate sets. In building the candidate sets for the microarchitectures
supporting SGX and SEV, we need to account for the fact that some
instructions are handled differently in these environments. Particularly, in
SGX, some of the instructions are illegal and thus will never be called on
bug-free enclaves. On SEV, all instructions are allowed to execute; however,
they will cause a hypervisor intercept, thus leaking to the attacker which
instruction was executed. In the case of SGX, we never include illegal
instructions in a candidate set, while in the case of SEV, we place the
intercepted instructions in candidate sets of size 1. Next, we detail what
instructions exactly end up in this special classification for the two TEEs.

SGX. We used the information from the Intel SDM Manual [37] Volume
3D Table 35-1 to find the criteria for instructions not allowed in SGX. To
summarize, instructions with a privilege level lower than 3 and instructions
that perform I/O operations or that could access the segment register are
considered Illegal. Note that an instruction could have an illegal version and
a legal version. For instance, the mov instruction can write to the segment
registers, and that version of the instruction is illegal.

SEV. Instructions that cause a hypervisor intercept on SEV are reported in
“Table 15-7. Instruction Intercepts” of the AMD64 Architecture
Programmer’s Manual [38]. Note that there might be other conditions that
cause intercepts, which might leak information to the attacker, but we only
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Figure B.1: Candidate set sizes’ distributions on the Skylake
microarchitecture for a SotA attacker in the native system with
varying cycle accuracy thresholds.

consider the instructions on that table in our calculation. Finally, the
dataset we used for the Zen microarchitecture was actually obtained from
information collected from a Zen+ CPU from uops.info [107]. The Zen+
and Zen microarchitectures support the exact same x86 instructions;
however, the Zen+ does not provide support for SEV.

B.3 Analysis of SotA Attacker Cycle Accuracy
To give an idea of the relationship between the strength of the SotA
attacker’s instruction cycle resolution and the native system information
leakage, we show in Figure B.1 how the candidate set sizes change with
different thresholds for the attacker’s cycle resolution.
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